Whitepaper - Draft preliminary
UnifiedSessionsManager
A Service Management Approach for CloudComputing

August 18, 2012

Contents

1 Abstract

2 A Basic View to Services in the Cloud

3 A Detailed View to Service-Composition
4 Datacenter and Applications Management
5 Current State and Open Issues

6 SEE ALSO

7 AUTHOR

8 COPYRIGHT

List of Tables

List of Figures

UnifiedSessionsManager as a Service-Composer o v v v v v v v oo
SW-Layers and Plugins o . e
Stacked VMs - VSTACK o
Stacked VMs - Multiple-Instance VSTACK
Multiple Service-Workspaces o v i i e e e e e e e e e e

U W N =

A Service Management Approach for CloudComputing 2/10

1 Abstract

The UnifiedSessionsManager is from beginning on designed with the emphasis of the management of embedded
services within virtual and physical machines, including the login sessions for both. This results in a slightly
different concept than of the products which are actually designed around the machine in their main focus.
The concept of the UnifiedSessionsManager avoids - whenever possible - the application of machine oriented
attributes, but presents a common generic task oriented interface with abstract parameters.

stacked-VMs == v-components

v-components == v-modules

g i ; V- components == y-services

v-components == v-apps '
T

(ad-hoc) VPN ’ RADIUS
IPSec

] = S LDAP
QQQQ Kerberos

= /
v-trace

v-ping v-circuit
v-host %

M-DNG

v-components == v-embedded

Figure 1: UnifiedSessionsManager as a Service-Composer

The overall resulting functionality is positioned as a personal Service-Manager, and offers particularly specific
features for the creation and application of combined services. The presented interface for this is kept unique
by the definition of a superset of partly optional attributes. Thus the seamless view onto a pool of services
and groups of services - v-components - providing various features is provided. The current version provides
particularly the desktop based assembly and automation of arbitrary services, following versions will emphasize
the VM based assembly. Either by reference, or by containment of nested VMs - stacked-VMs.

The UnifiedSessionsManager itself is designed in it’s current implementation as a thin mediation layer, adapting
the interfaces of the various components to a common abstract interface. This comprises the tools required
for the runtime environment including the management of resource data. The access control to the resources
including the encryption of network connections rely solely on the provided facilities of the underlying operating

A Service Management Approach for CloudComputing 3/10

systems.

2 A Basic View to Services in the Cloud

The first step to define a target structure for the requirements of a 'personal Cloud-Management’ application is
the definition of an overall concept for the major day-by-day usage embedded into a heterogeneous IT landscape.

Related to the CloudServices the evolution of the basically quite similar progress of the internet/intranet could
be used as a pattern. This was developed by using the term ’internet’ for the ’geek-period’, the term ’intranet’
for the migration into the high-priced enterprise customers. Finally ther term ’internet’ is used again, now for
the conversion into the public volume market. Each of the overlapping periods had it’s specific product policies
and design requirements.

The analogy which to be transfered for the design requirements of the UnifiedSessionsManager is the evolution
of the iconising terminology Cloud-Computing, Private-Clouds, and Public-Clouds with Cloud-Computing as
a synonym. The implied content is quite similar as for the internet, the public access to variuos distributed
resources. The association with intranet as a closed-group access pattern is basically almost the same as
associated with Private-Cloud.

Therefore the expectation is the evolution to a quite similar destination with some adapted design require-
ments. The major difference for the targeted Public-Cloud specification in comparison to the Internet is the
extended personal on-demand application of the provided services without the requirement of a provisioning
human administrator. This results in in the majority to a dialogue oriented public purchase of on-demand
processing and application services.

Thus the design implication for the UnifiedSessionsManager was the introduction of a personal service man-
agement application - A Personal CloudComposer.

The UnifiedSessionsManager is focusing on the personal management and application of embedded services
within the machines. The contained services are represented by specialized applications, either as a single ap-
plication, or a set of grouped applications consisting of one or more VMs.

The various logical session types are represented by a layered plugin structure, where these are categorised to
task specific sets of entities. These are either representing hardware associated sessions features such as physical
machines/PMs and virtual machines/VMs, or defining logical sessions objects, dynamically created and tighly
coupled to the demanded services. The latter extends the definition of a service even to the actual sessions
as the frontend, interconnection entity, and the lifetime of the optinally executed application. The on-demand
sessions are handeled by the HOSTs plugins comprising logins and the execution of applications.

ctys - call interface

| mediation layer |

! i_specific e specific | |] specific | | specific | custom |
| (| | |
| plugin | plugin | plugin - plugin { | plugin t
| - | - — ! | 4
I- I I I ' HOST | I application | [custom |
[0os - oS I 0os - oS | | 0os I
| il - | il |
| I | I

Figure 2: SW-Layers and Plugins

This is visibly expressed by a common syntax which is the superposition of all attributes, for example in case of
the vendor and product independent common address for the required component by it’s <machine-address>
. Thus the UnifiedSessionsManager implements a generic Personal Service-Management Application - a
ServiceComposer.

The first versions emphasizes the composition of assembled desktops by various local and remote services, which
are actually ordinary logins to machines with specific software sets. Therefore the script interface with GROUPS

A Service Management Approach for CloudComputing 4/10

and MACROs is provided first. Thus any user could easily design his personal service compositions including
the frontend-desktop. Optionally by dialogue, or for batch-repetition by the creation of a few simple bash scripts
based on remote-logins and remote-execution.

The evolutionary steps to the application level service composition by assembled VMs leak for now some OS
and probably HW support for nested multi-level stacked VMs. This becomes by the application of emulators
quickly a performance challange.

HOST = VNC
&
VMZ = QEMU Q&‘&
= Q Qaﬁ
VM1 = QEMU
Q c‘&é’

VMO = Xen-DomU

PM=HW + LInux + Dom0

Figure 3: Stacked VMs - VSTACK

Thus the VM based service assembly is for now still a draft proof-of-concept from 07/2008. The actual imple-
mentation was based on a VSTACK of nested QEMU based emulators within Xen and VMware Hypervisors.
The following test demonstrated the instanciation of multiple entities within each layer.

VNC VNC
‘ VNC

tst113‘ Cent0s5 ‘ tst114 ‘ CentoS5 ‘ tst115 | Centoss

‘ VNC ‘ [Qemu-lsss@ ‘QEMU-I3SS® [Qemu-lsss@ ‘ VNC ‘
[I ‘ |

CentoS5s | tst105 tst106 | centoss

XEN-U- XEN-U- @

XEN-0(S)

Cent0S5
PM 1

Figure 4: Stacked VMs - Multiple-Instance VSTACK

The scope of applicability comprises the common application by ordinary users as well, as by administra-
tors with advanced permissions. The access control is almost solely delegated to the system facilities - here
OpenSSH, Kerberos, LDAP, and sudo in combination with file access permissions either by UNIX only, or by
Posix-Attributes. This could be extended by SELinux and/or AFS when required and running on Linux.

The current application of VMSTACKS is mainly applied for the advanced management of VMs as a flat appli-
ance structure based on their contained guest OS attributes.

The first feature set and target direction is availabele by 01.03.003a01 from 02/2008, the first basically stable
applicable VSTACK feature set for the VM-based service composition by 01.07.001 beginning at 08/2008 at
sourceforge.net /berlios.org.

These comprise the definition and reference implementation for the automatic boot and shutdown of VSTACKSs
with multiple instances on each layer forming a tree structure, which particularly requires the controlled bottom-
up startup and top-down shutdown of the mashed runtime dependencies.

A Service Management Approach for CloudComputing 5/10

3 A Detailed View to Service-Composition

The current available products are commonly focussing on the 'technical convenience’ of the machine-handling,
but less on the contained ’services’. This is partly senseful of course, but it is offereing the convenience of the
technical ’administration functionality’ only. Either for the systemsadministrator in a more comprising but
granular feature scope, or for the user with a more restricted and abstract feature set. Whereas the UnifiedSes-
sionsManager emphasizes the contained applications and is shifting the focus to the provided services, which
are represented by sets of applications.

One draft example for the difference might be a locator application for Circusses in your area for making a
gift to your children. If you want to load a ’Circus-Exploration’ service, first a ’GIS-Service’, but second a
"Circus-Service’, and probably an interconnecting 'Navigator-Service’ are required. The machine-focused prod-
ucts support in analogy for the management of three appliances as individual entities only, which you have to
assemble by yourself.

What the UnifiedSessionsManager is designed for is the management of ONE Combined Service which is
assembled by the three composite services - the v-components. The stacked VMs - VSTACKS - even offer
a generic assembly feature, where the contained services could be either referenced only, or physically
located within the superior VM by containment. This actually flexible interface is based on TCP/IP, like
CORBA. The distinction to the current SOA pattern is the completely contained runtime-environment
within each v-component, offering almost independent assembly modules.

Last but not least, when the OSs support for nested VMs is present, these vertically defined logical structure
is going to be physically executed in a flat matrix structure of multiple cores. It is expected that in future
hundreds, even thousands of cores are going to be available. Making this approach an additional component
model for software development and flexible applications management even for the execution on one physical
machine only.

The personal service composition - The ServiceComposer - is implemented as draft for now on application
level, but is already present perfectly on the desktop level with extensive configuration features. The current
release allows for example by the GROUPS class for the grouping of arbitrary sessions to a new instance,
which could be used for the replacement of a single host by the extended <machine-address> . In com-
bination with the workspace handling of the -W option combined with the extended geometry option -g the
preparation of multiple ’service-workspaces’ could be efficiently automated.

Workspace-n _ﬁ| 00 || 200 || 2se00 | [ssa00
Workspace-1
P | 0.0 ‘ | 12800 | ‘ 2560,0 | | 38400
Work: (1 5 I
orrEpace 00 12800 2560,0 38400 L
Screen3 Screend Screens Screent —
3 4 5 5} [—
0.0 12800 2560,0 I
Screend Screend Screens
3 4 5

Figure 5: Multiple Service-Workspaces

A Service Management Approach for CloudComputing 6/10

The following example is just a gimmick, but the implementation of 'moving and resizing appliances’ on your
desktop with animated VMs and HOSTs consoles shows the available configuration and customization capabil-
ities. The -g option is a superset of the —geometry option of X11. The following examples demonstrate the
seamless interface, where the type of the session is going to be deleted for unambitiously defined entities based
on a pre-created inventory database.

For QEMU/KVM:

for i in 10 20 30;do
ctys -t QEMU -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

For VirtualBox(TM):

for i in 10 20 30;do
ctys -t VBOX -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

For VMWare-Server-1/2+Player-1/2/34+WS-6/7(TM) - next VM Ware-ESX-+ESXi(TM):

for i in 10 20 30;do
ctys -t VMW -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

For Xen - next XenServer(TM):

for i in 10 20 30;do
ctys -t XEN -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

For RDP-Console:

for i in 10 20 30;do
ctys -t RDP -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

For VN C-Console:

for i in 10 20 30;do
ctys -t VNC -a create=l:myApp,reconnect -g ${i}x100+${i}+100;
done

And similarly for X11-Console:

for i in 10 20 30;do
ctys -t X11 -a create=1l:myApp -g ${i}x100+${i}+100 -A on;
done

That’s all to be customized.

The presented desktops and workspaces on the home page are just started within seconds by an ordinary Gnome
menu entry - even though partly containing dozens of VMs on several hosts and additionaly several guest logins
by VNC, RDP, X11, etc..

A Service Management Approach for CloudComputing 7/10

4 Datacenter and Applications Management

Now to the datacenter and applications management aspect for administrators. The current implemented ver-
sion has some gaps related to typical production application, particularly for broader client management. The
features for the management of servers in the back-end by the administrator may fit quite good, in general
the needs for an administrators swiss-army-knife may be matched perfectly. The missing features are going
to follow soon, which includes some re-coding, performance enhancements, and the introduction of optional
server deamons including optional LDAP integration . Also the final integration of the commercial enterprise
degree products VMware-ESX(TM) and Citrix-XenServer(TM) embedded into an additional professional level
graphical user interface.

The sytems administrators tasks of the future are expected to be joined with the application administrators re-
sponsibilities. There might be particularly no extended general outsourcing paradigma into Public-Clouds, but
a case-by-case approach for additional on-demand options. The so called Private-Clouds may evolve quite simi-
lar to nowadays inhouse services, which could be easily extended by on-demand-resources from a Public-Cloud.

The responsibility for the administrator is expected to be the management of the back-end services, including
the management of the virtual client-services. These have quite similar algorithms for execution environment
constraints. The typical constraint migt be a specific hardware or a specific set of software to be installed in
the requested machine founding a service for a specific task. The constraint apply to the physically accessed
machine of a user, e.g. requiring a locally attached label-printer.

A typical constraint for the assignment of service aspects is a personal printer. For employees with a lot of 1-2
page printouts a department printer may not be suitable, also the previous example of a label-printer attached
to the physical workstation may require a specific software including drivers. For other tasks the label-printer
may not be required.

In a future load-balancing scenario you can say now, that the user requires a printer-aware-VM e.g. with an
installed label-application when he is working in the store. Afterwords in the office not. But when writing
the bill for his travel expenses the application composition may be different than for the construction task of
the engineering project he is working on. This could have an impact on the available floating-license pool of
contained applications.

So when assigning the VM to a specific PM from a pool of available, the contained application has to be recog-
nize by the balancer. Particularly when a market for appliances as lean applications evolves in a broader range.
Where lean appliances for example may be delivered as complete machines, including either a open-source OS,
or an appliance-only licensed commercial OS.

This aspect is already designed into the UnifiedSessionsManager by present specific attributes and application
specific custom fields. But once again, the UnifiedSessionsManager for now only draftly implements this feature
on application level. But the desktop based integration of distributed services is already present and fully
operational.

Another aspect for example is the security related to the access permissions. The administrator is supported
for this by system features for the assignment of user access permissions, and in addition by various features
of the UnifiedSessionsManager like the provisioning of individual database sets, which comprise the ’known as
accessible’ VMs. So due to the basic approach of the reuse of available system services, the user access could
be provisioned by standard mechanisms provided by the OS.

A Service Management Approach for CloudComputing 8/10

5 Current State and Open Issues

The first step of implementation is mainly targeted for the personal application by systemadministrators, SW
developers, and SW testers. The personal application for various tasks by users requiring some basic skills is
also foreseen. The automation is targeted for the ease of application, but not yet for the complete automation
including the various special cases combined with an extended graphical user interface. This is planned for the
second step, which is currently going to follow.

The implementation for now is based on scripting by bash and Python. The emphasis was set on a modular
expandable and replaceable software architecture, thus providing the basic structure for the furture migration.
Even though, the current available implementation fits the requirements for individual usage and is fully pro-
duction ready, the application within environments for a huge number of users may cause some performances
degradation. Also some feature enhancement is required.

The main enhancements planned to be implemented and added first to the service concept towards a major
enterprise environment are:

1. Re-Coding.

2. Introduction of optional server deamons.

3. Introduction of LDAP based shared data.

4. Introduction of an optional graphical user interface.

5. Introduction of Microsoft-Windows(TM) based features and agents.

Therefore some funding and probably support is required.

A Service Management Approach for CloudComputing 9/10

6 SEE ALSO

Datasheets:
UnifiedSessionsManager - Virtualisation and Cloud-Computing as a personal Workspace

Manuals:

ctys(1) , ctys-distribute(1) , ctys-createConfVM(1) , Command-Reference(*) , HowTo(*) , User-Manual(*)

Use-Cases:

e Desktop Automation - Desktop-Level Service Composition:
ctys-configuration-Gnome(*)

e Plugins:
ctys-uc-CLI | ctys-uc-PM | ctys-uc-QEMU(*) , ctys-uc-RDP | ctys-uc-VBOX(*) | ctys-uc-VMW(*) |
ctys-uc-X11 , ctys-uc-XEN(*)

o GuestOSs:

ctys-uc-CentOS(*) , ctys-uc-Debian(*) , ctys-uc-Enterprise-Linux(*) , ctys-uc-FreeBSD(*) | ctys-uc-Mandriva(*)
, ctys-uc-OpenBSD(*) | ctys-uc-OpenSUSE(*) , ctys-uc-RHEL(*) , ctys-uc-Ubuntu(*)

ctys-uc-Android(*) , ctys-uc-MeeGo(*)

ctys-uc-QNX(*) , ctys-uc-uCLinux(*)

ctys-uc-MS-Windows-NT(*) , ctys-uc-MS-Windows-2000(*) , ctys-uc-MS-Windows-2003(*) , ctys-uc-MS-
Windows-2008(%) , ctys-uc-MS-Windows-7(*) , ctys-uc-MS-Windows-XP(*)

(*) Contained in the DOC-Package only by CCL-3.0.

Archives:
sourceforge.net: [http://sourceforge.net/projects/ctys/files |

berlios.de: [http://developer.berlios.de/project /showfiles.php?group id=9005]

7 AUTHOR

Maintenance: <acue _sfl@sourceforge.net>

Homepage: <http://www.UnifiedSessionsManager.org>
Sourceforge.net: <http://sourceforge.net/projects/ctys>
Berlios.de: <http://ctys.berlios.de>

Commercial: <http://www.i4p.com>

8 COPYRIGHT

Copyright (C) 2008, 2009, 2010 Ingenieurbuero Arno-Can Uestuensoez
This is software and documentation from BASE package,

for software see GPL3 for license conditions,

http://sourceforge.net/projects/ctys/files
http://developer.berlios.de/project/showfiles.php?group_id=9005
mailto:unifiedsessionsmanager@protonmail.com
https://arnocan.wordpress.com
http://sourceforge.net/projects/ctys
http://ctys.berlios.de
https://arnocan.wordpress.com

A Service Management Approach for CloudComputing 10/10

for documents see GFDL-1.3 with invariant sections for license conditions.
The whole document - all sections - is/are defined as invariant.
For additional information refer to enclosed Releasenotes and License files.

A
i WP .

]
e

4 -

	Contents
	1 Abstract
	2 A Basic View to Services in the Cloud
	3 A Detailed View to Service-Composition
	4 Datacenter and Applications Management
	5 Current State and Open Issues
	6 SEE ALSO
	7 AUTHOR
	8 COPYRIGHT

