
The UnifiedSessionsManager

CTYS-USER-MANUAL
PDF-ONLINE-HELP

Version:01.12.002 - 2011.12.06
Release: International

Copyright 2008,2009,2010,2011
Arno-Can Uestuensoez

2

3

Published by
Ingenieurbuero fuer Telekommunikations und Software-Systemloesungen

Arno-Can Uestuensoez

Zentnerstr. 34
D-80798 Muenchen

Germany

Phone:+49.89.27817287

https://arnocan.wordpress.com/
http://ctys.sourceforge.net/

Copyright (C) 2008,2009,2010 by
Ingenieurbuero fuer Telekommunikations und Software-Systemloesungen

Arno-Can Uestuensoez

Licenses:
Software: GPL3

Basic-Dokuments: GFDL-1.3
Concepts+Interfaces+Documents: CCL - cc by-nc-nd

4

The following text is required dur to formal reasons, if you are going to use these artifacts for your personal
private purposes only you may probably not require to analyse it in detail. The application by scholars,
students, and apprentices is specifically desired.

The reason of the introduction of this distinction is the experience of repetitive and ungoing unfair competi-
tion with ’criminal elements’ contained, having a vast effect on the re-financiation of the further development
for this project. Thus this step could be named ’self-defence’.

Software: GPL3

UnifiedSessionsManager - ctys - Communtate To Your Sessions
Copyright (C) 2010 Engineering Office Arno-Can Uestuensoez.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, see <http://www.gnu.org/licenses/>.

Basic-Documents: GFDL-1.3

Copyright (C) 2010 Engineering Office Arno-Can Uestuensoez.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with Invariant Sections - the whole document content, whole front cover,
and whole back cover. A copy of the license is included in the section entitled "GNU Free
Documentation License".

5

Concepts+Interfaces+Documents:
CCL - Creative Commons License - Non-Commercial, No-Derivs

Copyright (C) 2010 Engineering Office Arno-Can Uestuensoez.

Attribution-Noncommercial-No Derivative Works 3.0 Unported

You are free: to Share and to copy, distribute and transmit the work
Under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Noncommercial: You may not use this work for commercial purposes.

No Derivative Works: You may not alter, transform, or build upon this work.

With the understanding that:

Waiver: Any of the above conditions can be waived if you get permission from the copyright
holder.

Public Domain: Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights: In no way are any of the following rights affected by the license:

1. Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

2. The author’s moral rights;
3. Rights other persons may have either in the work itself or in how the work is used,

such as publicity or privacy rights.

Notice:
For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Contents

I Common Basics 13

1 Preface 15
1.1 History . 15
1.2 Contact . 16
1.3 Legal . 16
1.4 Acknowledgements . 17

2 Abstract 19

3 Feature Specification 23
3.1 Feature Introduction . 23
3.2 Feature-Sum-Up . 23

3.2.1 Supported Hypervisors . 24
3.2.2 Tested GuestOS support . 25
3.2.3 Supported Native Plugins . 29
3.2.4 Tested Client OSs . 35

4 Claimed Inventions 39
4.1 First set - 2008.02.11 . 39
4.2 Second set - 2008.07.10 . 41
4.3 Third set - 2010.05.12 . 42
4.4 Third set - 2010.05.31 . 43

5 Secure Sessions 45
5.1 Xinerama Screen Layouts . 46

5.1.1 Physical Layout-1 . 47
Logical Layout-1a . 47
Logical Layout-1b . 48
Logical Layout-1c . 50

5.1.2 Physical Layout-2 . 50
5.2 Client-Session Windows . 51
5.3 Bulk Access . 53
5.4 Encryption and Tunneling with SSH . 55

5.4.1 DISPLAYFORWARDING . 56
5.4.2 CONNECTIONFORWARDING . 57
5.4.3 Execution-Locations . 58

6 Advanced Features 59
6.1 Bulk Access . 59
6.2 CLI-MACROS . 59
6.3 Generic Custom Tables . 59
6.4 Parallel and Background Operations . 60
6.5 Custom Desktops - Pre- and Post-Configuration . 61

7 HOSTs - Native Access 63
7.1 Command Line Access - CLI . 63
7.2 Start a GUI application - X11 . 63
7.3 Open a complete remote Desktop - VNC . 63

7

8 CONTENTS

8 PMs and VMs - The Stacked-Sessions 65
8.1 Session-Types . 67
8.2 VM-Stacks - Nested VMs . 69

8.2.1 Stacked-Operations . 69
8.2.2 Specification of VM Stacks . 70
8.2.3 Bulk-Core CPUs . 73
8.2.4 Almost Seamless Addressing . 74

8.3 Stacked Networking . 74
8.4 Stacked Functional Interworking . 76

8.4.1 Stack-Address Evaluation . 76
8.4.2 Startup . 77
8.4.3 Shutdown . 77
8.4.4 State-Propagation Basics . 79

State-Propagation . 79
Stack-Capability Interconnection . 81
Virtual-Hardware-Capability Interconnection . 82
Access Permissions . 82

9 CTYS-Nameservices 85
9.1 Basics . 85
9.2 Runtime Components . 86

9.2.1 Distributed Nameservice - CacheDB . 88
9.2.2 Network LDAP-Access . 90
9.2.3 Application Range and Limits . 90

9.3 Required Namebinding . 90
9.3.1 Integration of PMs, VMs, and HOSTs . 90

9.4 Group-Targets . 90
9.5 Addressing Nested Stacks . 91

II Software Design 95

10 Software Architecture 97
10.1 Hypervisor Sessions Model . 97
10.2 Basic Modular Design . 98
10.3 Communications Model . 99
10.4 Security Model . 100

11 Runtime Interfaces 101
11.1 Target-Platforms . 101
11.2 Communications Modes . 101
11.3 Control and Data Flow . 102

11.3.1 Distributed Controller . 102
11.3.2 Task Data . 103
11.3.3 Stack Interworking . 104

Create Propagation - CREATE . 104
Upward Propagation - CANCEL . 104
Downward Propagation . 106

11.4 Plugins Integration . 106
11.4.1 Basics on "bash" . 106
11.4.2 Component Framework . 107

Static Load of Modules . 107
Dynamic OnDemand Load of Modules . 107
Operational States . 107
IGNORE-Flag . 108
Multi-OS Boot Environments . 108

11.4.3 Dispatcher . 108
11.4.4 Common Data Structures . 109

ENUMERATE . 109
LIST . 112

CONTENTS 9

11.4.5 Categories . 113
Category CORE . 113
Category HOSTs . 113
Category VMs . 113
Category PMs . 113

11.4.6 bash-Plugins and bash-Libraries . 114

12 CTYS-Nameservices 115
12.1 Runtime Components . 115

III User Interface 117

13 Common Syntax and Semantics 119
13.1 General CLI processing . 119
13.2 Options Scanners - Reserved Characters . 120
13.3 Hosts, Groups, VMStacks and Sub-Tasks . 120

13.3.1 Common Concepts . 120
13.3.2 Flat Execution-Groups by Include . 121
13.3.3 Structured Execution-Groups by Sub-Tasks . 122
13.3.4 Stacks as Vertical-Subgroups . 123
13.3.5 VCircuits as Sequentially-Chained-Subgroups . 127

13.4 CLI macros . 128
13.5 Common Options . 130

14 Core Data 131
14.1 Overview . 131
14.2 Standard Configuration Files . 132
14.3 Common Data Fields . 133

ACCELERATOR|ACCEL . 133
ARCH . 133
BASEPATH|BASE|B . 133
CATEGORY|CAT . 134
CONTEXTSTRING|CSTRG . 134
CTYSRELEASE . 134
DIST . 134
DISTREL . 134
EXECLOCATION . 134
EXEPATH . 134
GATEWAY . 134
HWCAP . 135
HWREQ . 135
HYPERREL|HYREL . 135
HYPERRELRUN|HRELRUN|HRELX|HRX . 135
ID|I . 135
IFNAME . 136
JOBID . 136
LABEL|L . 136
MAC|M . 136
NETMASK . 137
NETNAME . 137
OS|O . 137
OSREL . 137
PM|HOST . 137
PNAME|P . 137
RELAY . 137
RELOCCAP . 137
SERNO . 138
SPORT . 138
SSHPORT . 138

10 CONTENTS

STACKCAP|SCAP . 138
STACKREQ|SREQ . 138
TCP|T . 138
TYPE . 139
USERSTRING|USTRG . 139
UUID|U . 139
OSREL . 139
PLATFORM|PFORM . 139
VCPU . 139
VERSION . 139
VMSTATE|VSTAT . 139
VRAM . 140
VNCBASE . 140
VNCDISPLAY|DISP . 140
VNCPORT|CPORT . 140

14.4 Common Processing Options . 140
CTYSADDRESS|CTYS . 140
DNS . 141
IP . 141
MACHINE . 141
MATCHVSTAT . 142
MAXKEY . 142
PKG . 142
REC_GEN[:<tab-args>] . 142
SORT[:<sort-args>] . 142
SPEC_GEN[:<tab-args>] . 143
TAB_GEN[:<tab-args>] . 143
TERSE . 143
TITLE . 143
TITLEIDX . 143
TITLEIDXASC . 143
USER . 143
XML_GEN[:<tab-args>] . 144

14.5 Specific Variations . 144
BASEPATH|BASE|B:<output> . 144
GROUP . 144
USER . 144
PID . 144
TUNNEL|SERVER|CLIENT|BOTH . 144

14.6 Generic Tables . 145
14.7 Generic Records . 146

15 Address Syntax 149
15.1 Basic Syntax Elements . 149
15.2 SyntaxExamples . 152
15.3 AddressSyntaxElements . 153

<target-application-entity> . 153
<machine-address> . 154
<access-port> . 154
CONSOLE types . 154
<access-point> . 154
<access-port> . 154
<application> . 154
<application-entity> . 154
basepath|base|b . 155
filename|fname|f . 155
<host-execution-frame> . 155
id|i . 155
LABEL|L . 155
MAC|M . 155

CONTENTS 11

<mconf-filename> . 155
<mconf-filename-path> . 156
<mconf-path> . 156
PATHNAME|PNAME|P . 156
<physical-access-point> . 156
<target-application-entity> . 156
TCP|T . 156
UUID|U . 156
<virtual-access-point> . 156

15.4 Stack Addresses . 156
<stack-address> . 157

15.5 Group Resolution . 157
<machine-address> . 157
<stack-address> . 159

15.6 ctys-help-on . 160
-H path . 160
-H list . 160
-H listall . 160
-H (man|html|pdf) . 161
-H funcList . 161
-H funcListMod . 161
-H funcHead . 161
-H (_ONLINEHELP_|_HELP_) . 161
EXAMPLES . 161

<ctys-command> -H (_ONLINEHELP_|_HELP_) 161
<ctys-command> -H html=base . 161
<ctys-command> -H html=doc . 161
<ctys-command> -H list . 161
<ctys-command> -H ctys . 161
<ctys-command> -H man=ctys . 161
<ctys-command> -H html=ctys . 161
<ctys-command> -H pdf=ctys . 161
<ctys-command> -H pdf=howto . 162
<ctys-command> -H pdf=howto-print . 162
<ctys-command> -H pdf=command-ref . 162
<ctys-command> -H html=CLI,X11,VNC,VMW . 162
<ctys-command> -H html=ctys-extractARPlst,extractMAClst 162

IV Appendices 163

16 Current Loaded Plugins 165

17 Miscellaneous 171
17.1 Basic EXEC principle . 171
17.2 PATH . 171
17.3 Configuration files . 172
17.4 Media Access Control(MAC) Addresses - VM-NICs . 172

18 LICENSES 175
18.1 CCL-3.0 With Attributes . 175

Bibliography 183
Books . 183

UNIX . 183
Security . 184
Networks . 185
Embedded Systems . 186

Online References . 186
OSs . 186

12 CONTENTS

Hypervisors/Emulators . 187
kvm . 187
QEMU . 187
SkyEye . 188
VMware . 188
Xen . 188

Security . 188
Specials . 188

FreeDOS . 188
Dynagen/Dynamips . 189
QEMU-Networking with VDE . 189
PXE . 189
Routing . 189
Scratchbox . 189
Serial-Console . 189

Miscellanuous . 189
UnfiedSessionsManager Versions . 189

Sponsored OpenSource Projects . 191
Commercial Support . 191

List of Tables

3.1 Color coding of implementation and test states. 24
3.2 Supported Hypervisors . 24
3.3 Getestete GuestOS . 25
3.4 Tested GuestOS . 26
3.5 Tested GuestOS . 27
3.6 Tested GuestOS . 28
3.7 Native Plugins vs. OS-Distribution . 29
3.8 Native Plugins vs. OS-Distribution . 30
3.9 Native Plugins vs. OS-Distribution . 31
3.10 Durch HOSTs Plugins Unterstützte Clients und Desktops . 32
3.11 Durch HOSTs Plugins Unterstützte Clients und Desktops . 33
3.12 Unterstützte HOSTs-Plugin Sub-Komponenten . 33
3.13 Unterstützte Server basierte VMs plugins . 33
3.14 Unterstützte Host basierte VMs plugins . 34
3.15 Getestete ClientOS . 35
3.16 Getestete ClientOS . 36
3.17 Getestete ClientOS . 37

5.1 Mapping schema of labels to screens . 50

8.1 List of Standard Plugins . 68
8.2 Targets for state propagation of CANCEL action . 79
8.3 State-Propagation for the first version . 80
8.4 Application of Propagation Scopes . 81

11.1 ENUMERATE-Input-Format from Plugins . 110
11.2 ENUMERATE-Output-Format of Sub-Dispatcher . 111
11.3 LIST-Input-Format from Plugins . 112
11.4 LIST-Output-Format of Sub-Dispatcher . 112

14.1 Supported File-Extensions . 133

13

List of Figures

2.1 The UnifiedSessionsManager . 19
2.2 Physical Multi-Monitor Design . 21
2.3 Logical Xinerama-Mode . 22

5.1 Physical Multi-Monitor Layout-1 . 47
5.2 Physical Multi-Monitor Design . 47
5.3 Logical Multi-Screen Layout-1 . 48
5.4 Logical Xinerama Layout . 48
5.5 Logical Multi-Screen X11-Remapping . 49
5.6 Logical Multi-Screen X11-Array-Style . 49
5.7 Physical Multi-Monitor Array-Style Addressing . 49
5.8 Mapping schema for multiple Desktops/Workspaces . 50
5.9 Physical Multi-Monitor Layout-2 . 51
5.10 Basic handling of client sessions windows . 52
5.11 DISPLAYFORWARDING . 56
5.12 CONNECTIONFORWARDING . 57

8.1 Supported Stackmodels . 66
8.2 Pane-View: QEMU-ARM in Xen-DomU . 71
8.3 Stack-View: QEMU-ARM in Xen-DomU . 71
8.4 Pane-View: W2K in VMware on Linux . 71
8.5 Stack-View: W2K in VMware on Linux . 72
8.6 Pane-View: Virtual PC with Linux in VMware . 72
8.7 Stack-View: Virtual PC with Linux in VMware . 73
8.8 Virtual interconnection structure . 75
8.9 Nested Protocol Stacks . 76
8.10 Stack-View: W2K as HVM in DomU . 78

9.1 Nameservice components . 87
9.2 Cache Generation . 88
9.3 Distributed Caches . 89
9.4 Stack-Controller Data . 92
9.5 Stack-Controller Data Visibility . 92

10.1 Hypervisor Sessions Model . 97
10.2 ctys Software Layers . 98
10.3 ctys distributed components . 98
10.4 ctys distributed components . 99

11.1 ctys Local Control Flow . 103
11.2 Task Data handled by the main dispatcher . 104
11.3 Nested Upward-Stackpropagation . 105

12.1 Nameservice components . 116

13.1 Subtask . 121
13.2 Groupresolution by Include only . 121
13.3 Groupresolution by Subgroups . 123
13.4 Combined Subgroups and Substacks . 123

15

16 LIST OF FIGURES

13.5 Stack Example for Basic Call-Interface . 126
13.6 CONSOLE- and HOSTs-Asynchronity for Stacked-Execution 126
13.7 VCIRCUIT . 128

15.1 TAE - Target Application Entity address . 153
15.2 Machine-Address . 154
15.3 <access-ports> . 154
15.4 CONSOLE types . 154
15.5 Stack-Address . 157
15.6 Group-Address . 157
15.7 Groups of Stack-Addresses . 159

Part I

Common Basics

17

Chapter 1

Preface

1.1 History

Version Date Author Description
01.03.003.a01[146] 2008.02.11 Arno-Can Uestuensoez Initial pre-release as embedded

printable help
01.07.001.a01[147] 2008.08.03 Arno-Can Uestuensoez First major update with numerous

additions and partial review.
01.07.001.b02[148] 2008.08.11 Arno-Can Uestuensoez Minor editorial updates.

A lot of tests, some fixes.
01.07.001.b03[149] 2008.08.12 Arno-Can Uestuensoez Minor editorial updates.
01.07.001.b04[150] 2008.08.16 Arno-Can Uestuensoez Enhancement of documentation

and Web-Site.
01.11.001[151] 2010.04.25 Arno-Can Uestuensoez Major enhancements and updates.
01.11.002 2010.05.24 Arno-Can Uestuensoez Documentation and web site enhancements.
01.11.003[151] 2010.05.31 Arno-Can Üstünsöz Patch Default-Port VMware(TM)-Server-2.x,

new tool ctys-beamer, add some documentation.
01.11.005[151] 2010.06.27 Arno-Can Üstünsöz Alpha version of RDP plugin, bugfixes,

added some documentation.
01.11.006[151] 2010.07.14 Arno-Can Üstünsöz Alpha version of VBOX - VirtualBox(TM) plugin,

bugfixes, added documentation,
preparation of Typo3-Website.

01.11.008[151] 2010.07.30 Arno-Can Üstünsöz Alpha-Version EnterpriseLinux,
bugfixes, added documentation,
First Gnome-Menues, ctys-scripts.

01.11.009[151] 2010.08.16 Arno-Can Üstünsöz Alpha-Version gnome-starter, ctys-config,
Fehlerbereinigungen, Ergänzung Dokumentation.

01.11.010[151] 2010.08.20 Arno-Can Üstünsöz Verify GuetsOSs: ucLinux-QEMU(ARM+Coldfire),
QNX-QEMU(x86), QNX-VBOX(x86),bugfixes,
added documentation.

01.11.011[151] 2010.11.07 Arno-Can Üstünsöz Verify New GuetsOSs: Android, MeeGo, RHEL,
QNX.
Version Updates: CentOS, Debian, OpenSUSE,
OpenBSD, Ubuntu.
Bugfixes, extension of documentation.
menu generation.

01.11.014[151] 2010.11.22 Arno-Can Üstünsöz Minor editorial.

19

20 CHAPTER 1. PREFACE

1.2 Contact

Public maintenance: acue@sf1_sourceforge.net
Administrative contact: unifiedsessionsmanager@protonmail.com

acue@UnifiedSessionsManager.eu
Commercial Services: Engineering Office Arno-Can Uestuensoez - www.i4p.com
The professional services are offered for Ingenieurbuero Arno-Can Uestuensoez - www.i4p.com
end-customers only, so called ’body-leasers’
are definetly not welcome.

1.3 Legal

All mentioned AMD products and their registered names are Trademarks of the Company Advanced Micro
Devices, Inc.

All mentioned Google products and their registered names are Trademarks of the Google, Inc.

All mentioned Intel products and their registered names are Trademarks of the Company Intel, Inc.

All mentioned Microsoft products and their registered names are Trademarks of the Company Microsoft,
Inc.

All mentioned Oracle products and their registered names are Trademarks of the Company Oracle, Inc.

QEMU is a trademark of Fabrice Bellard.

All mentioned RealVNC products and their registered names are Trademarks of the Company RealVNC
Ltd.

All mentioned Red Hat products and their registered names are Trademarks of the Company Red Hat, Inc.

All mentioned Sun products and their registered names are Trademarks of the Sun Microsystems, Inc.

All mentioned SuSE products and their registered names are Trademarks of the Company Novell, Inc.

All mentioned VMware products and their registered names are Trademarks of the Company VMware, Inc.

Xen is a trademark of XenSource Inc.

If some is forgotten, it will be added immediately.

mailto:acue@sf1_sourceforge.net
mailto:unifiedsessionsmanager@protonmail.com
mailto:acue@UnifiedSessionsManager.eu
https://arnocan.wordpress.com/
https://arnocan.wordpress.com/

1.4. ACKNOWLEDGEMENTS 21

1.4 Acknowledgements

And, of course, I want to thank VMware for supporting their excellent VMware-Server and VMware-Player
for free. The VMware-Workstation product initiated to my mind a major step of change and inspired a lot
how software is commonly used and developed.

Many Thanks to Mr. Fabrice Bellard for his QEMU, which is the only and one test base for me to demon-
strate a nested stack of VMs and it’s integrated addressing including state propagation algorithms for now.

Great thank to the inventors of Xen at the university of Cambridge. UK, for their efficient VM.

And, of course, I would have probably no chance without "googling", so, even though it has to do something
with business, many thanks for bringing the information of the whole world - and as soon as contacted of
the remaining universe for sure - to my desktop. Hopefully I cope the current amount before the remaining
universe comes into the scene.

I am meanwhile an enthusiastic user of CentOS/RHEL and OpenBSD, so I am glad having the opportunity
to express my thank this way to all supporting persons an companies. Particularly RedHat Inc. for their
actual open minded distribution policy and the CentOS team for their great work, and the OpenBSD team
for their ongoing support for a base of real security.

And, last but not least, I want to thank very, very much to all the countless contributors for the numerous
excellent Open- and Free-Software I use. Hopefully I can express my commitment and thanks with this piece
of software, and my next following projects.

And finally I would like to express my thank to my friend Dirk and his wife Gisela, for their patience and
enduring support. Their support at all enabled me reaching this milestone, despite of all the various and
countless challenges and throwbacks to be managed.

Arno-Can Uestuensoez
Munich, Germany
March 2008

Chapter 2

Abstract

The "UnifiedSessionsManager" with it’s main component "ctys" - "Commutate To Your Sessions" - is a
unified and simplified shell-interface for intermixed operations and management of local and remote sessions
on physical and virtual machines.

Figure 2.1: The UnifiedSessionsManager

The primary target was to combine facilities for the management of physical and virtual machines including
the modelled sessions objects - alltogether combined with networking and security features - into a seamless
interface.

• Management of Nested Multi-Level Stacks of Virtual Machines as Virtual Components

• Management of User-Interfaces on Monitor Arrays

• Support of Energy-Efficiency and enhanced Availability by transparent and dynamic Load-Management
and integrated Wake-On-LAN

• Poll systems information for offered HW-Capabilities and Health-Monitoring

• Support of Integrated CPU Emulation for Cross-Development and Embedded Systems

• Support of Integrated Nameservices with Views and Hierarchical Groups

23

24 CHAPTER 2. ABSTRACT

• Seamless access to all types of sessions by the definition of an Extended Address Schema

• Support of encryption by SSH and authentication/authorisation based on one or more of the common
approaches by SSH, Kerberos and SUDO.

25

Usability

The emphasis is clearly on the integrated and simplified usability of actually much more com-
plex interfaces. The main building block for this is the handling of the desktop presentation
of the managed entities. This particularly comprises the handling of session windows on an
X11 based desktop with logically combined screens by the so called "Xinerama" mode. But
also some addressing facilities for disconnection and re-establishment of sessions to headless-
running server entities.

• Support of seamless logical addressing for multiple screens.

• Sub-positioning by screen aliases as customized in standard "/etc/X11/xorg.conf".

• Handles multiple "Screen Layouts" independent from the actually loaded layout.

• Supports for multiple desktops with a desktop aware job-scheduler for "flicker-avoidance"
of intermixed calls for display on multiple desktops.

Figure 2.2: Physical Multi-Monitor Design

This screen layout contains(almost all entities are (TM)):

• 1x VMSTACK

• 4x CentOS, , 1x Fedora-8, 1x SuSE-9.3, 1x SuSE-10.2, 1x OpenSUSE-10.3, 1x 1x debian-
4r3, Ubuntu-6.06.1, 1x Ubuntu-8.04, 1x OpenBSD-4.0, 1x OpenBSD-4.3, 1x Solaris-10,
1x MS-Windows2000

• 2x EMACSAM-Consoles

• 4x VNC-Consoles

• 5x X11-Consoles(here gnome-terminal)

• utilized by QEMU, XEN, and VMware

• Anyhow, this setup is far from the maximum frequently and easily utilized with the
UnifiedSessionsManager.

Where all of them require different specific context-options due to presentation, security, and
VM-Creation-Call requirements.

26 CHAPTER 2. ABSTRACT

The benefit of the GROUPs and MACROs feature becomes quickly obvious, when the previ-
ous even simple example is shown by it’s screenshot as resulting from the logical Xinerama-
Screen.

Figure 2.3: Logical Xinerama-Mode

The whole bunch of required calls could be pre-configured by MACROs and/or GROUPS
with additional ordinary shell-facilities and for example could be reduced to the group "my-
desktop". This includes the required boot of physical and virtual machines as well as the
requested client for presentation and access on the local destop.

• ctys mydesktop

That’s it.

The termination of the group could be prepared even more simple, when the STACK-
Propagation feature of CANCEL is utilized, thus resulting in a call like:

• ctys -t PM -a cancel myhostlist

Which by default performs a native and recursive shutdown of the whole set of stacked
machines executed top-down.

Current provided standard components are CLI , X11 , VNC , KVM (accelerator for
QEMU), QEMU , VMW (VMware-Workstation/Server/Player), XEN , and PM (Linux,
Solaris, OpenSolaris, OpenBSD, and FreeBSD). Any OS is supported, when control by hy-
pervisor only is sufficient.

VirtualBox and OpenVZ are going to be intergrated next, as well as the specific upgrades
for Server editions ov XEN and VMW.

Chapter 3

Feature Specification

3.1 Feature Introduction

The "UnifiedSessionsManager" comprises a number of first-time implemented features as-
sembling to a solution for configuration and operation of environments with bulks of virtual
and physical processing nodes.

Some to be mentioned are:

1. Management of User-Interfaces on Distributed Monitor-Arrays

2. Management of nested multi-level virtualizations

3. Support of Integrated CPU-Emulation for multiple architectures

4. Definition on an extended Address Schema

5. Support of Integrated Nameservices

6. Built-In support fo Encryption and Authentication

7. Introduction of GROUPS concept

3.2 Feature-Sum-Up

The following tables present an overview of the supproted components for current release.
The listed PC, Workstation and Server based platforms with listed Hypervisors are sup-
ported and tested when marked with "OK". Additional platforms are going to be added for
next versions("*").

The utility "ctys-genmconf" supports the detection and generation of relevant control data,
the utility "ctys-plugins" verifies actual available operational states and resultingfeatures.

The main development and production platform for the UnifiedSessionsManager is CentOS.

The following pages show the current operational and test states of the various combinations
of hypervisors, HostOS, and GuestOS. The actual operational states are visualized by specific
colors as shown in next table.

27

28 CHAPTER 3. FEATURE SPECIFICATION

Color State
The versions actually targeted to be supported
with maximum available feature set.
OK: Tested and operational in current release.
NEXT: Sceduled for the next release.
Probably already partly tested.

* PLANNED: Intended for a later release.
- OPEN: Technically possible, but for some reasons not yet

planned to be implemented.

Table 3.1: Color coding of implementation and test states.

3.2.1 Supported Hypervisors

Supported Hypervisors on platforms as shown in the following tables.

Plugin Supported Hypervisor Versions
Previous Current InProcess

KVM KVM 2.6.18/kvm-83
2.6.18-6/kvm-62
2.6.26-1/kvm-72

OVZ OpenVZ
QEMU Qemu 0.9.0 0.9.1,11.0.0,0.12.2 0.12.3
VBOX VirtualBox(TM) 3.x 4.x
VMW VMware-Player(TM) 1.0.4 1.0.5,2.5.3,3.0.1
VMW VMware-Server (TM) 1.0.4,1.0.6,1.0.9 1.0.10,2.0.2
VMW VMware-Workstation(TM) 6.0.2,6.0.4,6.5.1 6.5.3,7.0.1 8.x
VMW VMware-ESXi-Server(TM) 4.x.x
VMW VMware-ESX-Server(TM) 4.1.0
XEN Xen(TM) 3.0.3,3.1.0 3.3.0,3.3.1,3.4.2
XEN Citrix-XenServer(TM) 5.5.0, 5.6.0

Table 3.2: Supported Hypervisors

3.2. FEATURE-SUM-UP 29

3.2.2 Tested GuestOS support

The following table lists the already tested OS-Distribution vs. Containing Plugins. The
containing plugins comprise the plugin itself as well as the required software and hypervisors.

Distribution PMs VMs
0 1+n KVM OVZ VBOX VMW XEN QEMU

x86 x86 x86 x86 x86 x86 x86 x86 ARM

BSD
DragonFlyBSD-2.10.1 X * X - X X - X -
FreeBSD-7 OK * OK - * OK - OK -
FreeBSD-8 OK * OK - X OK - OK -
NetBSD-5.0.1 * * * - OK * * * *
NetBSD-5.2 X * X - X X * X *
OpenBSD-41 OK OK OK - OK OK - OK -

Linux
CentOS-5 OK OK OK * OK OK OK OK -
CentOS-6 OK * * * OK * * *
Debian-4-etch OK OK - - - OK - OK -
Debian-5-lenny OK OK OK * OK OK OK OK
Debian-6-squeeze * * * * * * * * *
Oracle Linux 6 * * * * * * - * -
Oracle Linux 5 * * OK * OK * - OK -
Fedora-8 OK OK OK - - OK OK OK -
Fedora-10 OK OK OK - - - - OK -
Fedora-12 - - - - OK - - - -
Fedora-13 * * OK - OK * - OK -
Fedora-14 * * * - * * - * -
Fermilinux-5.5 * * * - * * * * -
Knoppix6.2 * * OK - * * * OK -
Knoppix-6.2.1 OK OK OK - OK * * OK -
ADRIANE
Mandriva-2010 OK OK OK - OK OK * OK -
Scientific Linux 5 OK OK OK - OK OK * OK -
Scientific Linux 6 X X X - X X * X -
openSUSE-10.3 OK OK - - - OK - OK -
openSUSE-11.1 OK
openSUSE-11.2 OK OK OK - OK OK * OK -
openSUSE-11.3 OK OK OK - OK * * OK -
openSUSE-11.4 * * * - * * * * -
Puppet-Linux * * * - * * * * *
RedHat-Enterprise OK OK OK - OK X X OK -
Linux 5
RedHat-Enterprise OK OK OK - OK X X OK -
Linux 6beta
Slackware-13.1 * * * - * * * * *

Table 3.3: Getestete GuestOS

30 CHAPTER 3. FEATURE SPECIFICATION

Distribution PMs VMs
0 1+n KVM OVZ VBOX VMW XEN QEMU

x86 x86 x86 x86 x86 x86 x86 x86 ARM
SuSE-9.3 - OK - - - OK - - -
SuSE-10.2 - OK - - - - OK - -
Ubuntu-6.06.1-dapper - OK - - - OK - - -
Ubuntu-7.10-gutsy - OK - - - OK - - -
Ubuntu-8.04-hardy OK OK OK - - OK OK OK -
Ubuntu-9.10 OK OK OK * OK OK * OK -
Ubuntu-10.10 OK OK OK * OK OK X OK -
Ubuntu-11.04 * * * * * * X * -

Solaris(TM)
Solaris-102 OK OK OK - OK OK - OK -
OpenSolaris-2009.64 - OK OK - OK OK * OK -
ILLUMOS5 - * * - * * * * -
Nexenta6 - * * - * * * * -
OpenIndiana7 * * * - * * * * -

DOS
FreeDOS7 - - * - * * * OK -
Balder7 - - * - * * * OK -
MS-Dos-5.x7 - - * - * * * * -
MS-Dos-6.x7 - - * - * * * * -

Windows
MS-Windows-NT7 * * * - * OK * * -
MS-Windows-20007 * * * - * OK * * -
MS-Windows-XP7 * * * - OK OK * * -
MS-Windows-20037 * * * - * OK * * -
MS-Windows-77 * * * - OK * * * -
MS-Windows-20087 * * * - OK * * * -

Table 3.4: Tested GuestOS

3.2. FEATURE-SUM-UP 31

Distribution PMs VMs
0 1+n KVM OVZ VBOX VMW XEN QEMU

x86 x86 x86 x86 x86 x86 x86 x86 ARM

Smartphone
Android-2.2 * * OK - OK - - OK *
Windows-7-phone * * * - * * - * *

Netbook
Android-2.2 * * OK - OK - - OK *
MeeGo-1.0 * * (X) - OK * - (X) *
Windows-7-phone * * * - * * - * *
Ubuntu-11.04 *

Tablet
Android-2.2 * * OK - OK - - OK *
MeeGo-1.0 * * (X) - OK * - (X) *
Windows-7-phone * * * - * * - * *
Ubuntu-11.04 *

Apple(TM) - OS
Mac-OS-6.1.3 * * * - * * * * -

Table 3.5: Tested GuestOS

5No WoL for now.
6Some severe limitations may occur for Solaris, due the limitation of the "args" output of "ps" command to 80 characters.

Thus the LIST action is faulty for some plugins, which means the instances are simply hidden due to argument-parts truncated
by "ps". Some specific adaptations will follow. This depends on the argument ordering of the current command/wrapper and
the actual contents beeing truncated. Supported Plugins: HOSTs and PM.

7Control by hypervisor only, no native support. Cygwin is foreseen for eventual future adaption. Tested with several versions,
e.g. Windows-NT-Server, Windows-2000, and Windows-XP.

32 CHAPTER 3. FEATURE SPECIFICATION

Distribution PMs VMs
0 1+n KVM OVZ VBOX VMW XEN QEMU

x86 x86 x86 x86 x86 x86 x86 x86 ARM

Embedded
FreeRTOS * * - - - - - - *
QNX * * * - OK - - (OK) *
uCLinux * * - - - - - * (OK)

Table 3.6: Tested GuestOS

3.2. FEATURE-SUM-UP 33

3.2.3 Supported Native Plugins

The next table shows the passed tests of supported native plugins vs. OS-Distribution. The
plugins including required hypervisors are to be executed on the listed OSs. Other OSs and
versions might work as well.

Distribution PMs VMs HOSTs
PM KVM OVZ QEMU VBOX VMW XEN CLI RDP VNC X11

BSD
DragonFlyBSD-2.10.1 X - X - - * X X X X
FreeBSD-7 OK - * - - * OK * OK OK
FreeBSD-8 OK - X - - X OK X OK OK
NetBSD-5.0.2 * - * - - * * * * *
NetBSD-5.1 X - X - - * X X X X
OpenBSD-4 OK - - X - - - OK X OK OK

Linux
CentOS-5 OK OK * OK OK OK OK OK OK OK OK
CentOS-6 OK * * * OK * * OK OK OK OK
Debian-4-etch OK - - OK - OK - OK OK OK
Debian-5-lenny OK OK * OK OK OK OK OK OK OK OK
Debian-6-squeeze X X * X X X X X X X X
Enterprise OK OK * OK X - OK OK (OK) OK OK
Linux Server 5 /
Unbreakable Linux
Fedora-8 OK - - OK - - OK OK OK OK
Fedora-12 OK * - * * * * OK OK OK
Fedora-13 * * - * * * * OK (OK) OK OK
Fedora-14 * * - * * * * * * * *
Fermilinux-5.5 * * - * * * * * * * *
Gentoo * - - - - - - * * * *
Knoppix OK * - * * * * OK (OK) OK (OK)
Mandriva-2010 OK - - - - - - OK OK OK
openSUSE-10.3 OK - - OK - OK - OK OK OK
openSUSE-11.1 OK - - - - - OK OK OK OK
openSUSE-11.2 OK OK - OK * * * OK OK OK
openSUSE-11.3 OK OK * OK OK * OK OK OK OK OK
OpenSUSE-11.4 * * - * * * * * * * *
RedHat-Enterprise OK OK * OK * OK OK OK OK OK OK
Linux 5.5
RedHat-Enterprise OK X * X * * * OK OK OK OK
Linux 6.0 beta
Scientific Linux 5 OK OK - OK * OK OK OK * OK OK
Scientific Linux 6 X X * X X X X X X X X
Sackware-13.1 * * - * * * * * * * *
SuSE-9.3 OK - - - - OK - OK OK OK
SuSE-10.2 OK - - - - - - OK OK OK

Table 3.7: Native Plugins vs. OS-Distribution

34 CHAPTER 3. FEATURE SPECIFICATION

Distribution PMs VMs HOSTs
PM KVM OVZ QEMU VBOX VMW XEN CLI RDP VNC X11

Ubuntu-6.06.1 - - - - - - - OK OK OK
Ubuntu-7.10 - - - - - - - OK OK OK
Ubuntu-8.04 OK OK - (OK)8 - - - OK OK OK
Ubuntu-9.10 OK * - * * * * OK * OK OK
Ubuntu-10.10 OK OK * OK X X X OK OK OK OK
Ubuntu-11.04 X X * X X X X X X X X

Hypervisor-Distributions
ESXi * - - - - - - * * -
ESX-4.1.0 X - - - - X - OK X OK OK
XenServer-5.5.09 X - - - - - X OK X OK OK

Solaris(TM)
Solaris-10 (OK) - - - - - - (OK) (OK) (OK)
OpenSolaris OK - - X X - * OK X OK OK
2009.6
ILLUMOS * - - * * - * * * * *
Nexenta * - - * * - * * * * *
OpenIndiana * - - * * - * * * * *

MS-Windows(TM)/Cygwin
MS-WNT410 X - - X X X - X X X X
MS-W2K11 X - - X X X - OK OK OK OK
MS-WXP12 X - - X X X - OK OK OK OK
MS-W2K313 X - - X X X - OK X X OK
MS-W2K8R214 X - - X X X - OK OK OK OK
MS-W715 X - - X X X - X X X X

Apple(TM) - OS
Mac-OSX-10.6.3 * - - * * - - * * * *

HP(TM) - OS
HP-UX * - - * - - - * * * *

IBM(TM) - OS
AIX * - - * - - - * * * *

Smartphone
Android-2.2 * - - - - - - * * * *
MeeGo-1.0 OK * - * - - - OK * * *
Windows-Phone * - - - - - - * * * *

Table 3.8: Native Plugins vs. OS-Distribution

15Compilation of ’qemu-system-x86_64’ with support for ’-name’ option required.
16Requires Cygwin support and a .

3.2. FEATURE-SUM-UP 35

Distribution PMs VMs HOSTs
PM KVM OVZ QEMU VBOX VMW XEN CLI RDP VNC X11

Embedded
FreeRTOS * - - - - - - * * * *
QNX * - - - - - - * * * *
RTEMS-Dev - - - * * - - * * * *
uCLinux * - - - - - - * * * *

Table 3.9: Native Plugins vs. OS-Distribution

17Compilation of ’qemu-system-x86_64’ with support for ’-name’ option required.
18Requires Cygwin support and a .

36 CHAPTER 3. FEATURE SPECIFICATION

Unterstützte Produkte und Versionen für die jeweiligen Plugins. Diese varirieren z.T. für
die verschiedenen Plattformen.

Plugin / Unterstütztes Produkt Versionen
Toolset Vorversion Aktuell InBearbeitung

CLI bash 3.2.39.1, >3.x

Cygwin(alpha) 1.7.9-1(2.738)

RDP rdesktop 1.6

krdc 3.5.10

tsclient 0.150

mstsc.exe x

vinagre 0.51

VirtualBox 3.x 4.x

MS-Windows(TM) W4NT, W2K, WXP,
W2K3, W2K8, W7

Cygwin(alpha) 1.7.9-1(2.738)

VNC RealVNC 3.3.7, 4.1.1, 4.1.3

4.1.1, 4.1.2

TigerVNC 1.0.90

TightVNC 1.2.9, 1.3.10, 2.0.2

MetaVNC 0.6.5

QEMU/KVM >0.9.x

UltraVNC 1.0.8.2

VMware W:6.x W:7.x

XEN >3.x

Cygwin(alpha) 1.7.9-1(2.738)

Table 3.10: Durch HOSTs Plugins Unterstützte Clients und Desktops

3.2. FEATURE-SUM-UP 37

Plugin / Unterstütztes Produkt Versionen
Toolset Vorversion Aktuell InBearbeitung

X11 gnome-terminal 2.22.3

xterm 235

emacs >21.x >22.x, 22.2.1

Cygwin(alpha) 1.7.9-1(2.738)

Table 3.11: Durch HOSTs Plugins Unterstützte Clients und Desktops

Plugin / Unterstütztes Produkt Versionen
Toolset Vorversion Aktuell InBearbeitung

Desktop Gnome 2.20.7

KDE 5.48

fvwm 2.5.26

xfce x.x

Shells bash 3.2.39.1, >3.x

Cygwin(alpha) 1.7.9-1(2.738)

Table 3.12: Unterstützte HOSTs-Plugin Sub-Komponenten

Plugin / Unterstütztes Produkt Versionen
Toolset Vorversion Aktuell InBearbeitung

QEMU Qemu 0.9.0 0.9.1,0.11.0,0.12.2 0.12.3

KQEMU

KVM

VBOX VirtualBox(TM) 3.1.2 3.2.8, 3.2.10, 4.x

VMW VMware-Player(TM) 1.0.4 1.0.5,2.5.3,3.0.1

VMware-Server (TM) 1.0.4,1.0.6,1.0.9 1.0.10,2.0.2

VMware-Workstation(TM) 6.0.2,6.0.4,6.5.1 6.5.3,7.0.1

XEN Xen(TM) 3.0.3,3.1.0 3.3.0,3.3.1,3.4.2,4.0.0

Table 3.13: Unterstützte Server basierte VMs plugins

38 CHAPTER 3. FEATURE SPECIFICATION

Plugin / Unterstütztes Produkt Versionen
Toolset Vorversion Aktuell InBearbeitung

VMW VMware-ESX-Server(TM) 4.1.0

VMware-ESXi-Server(TM) 4.0.0

XEN Citrix-XenServer(TM) 5.5.0 5.6.0

Table 3.14: Unterstützte Host basierte VMs plugins

3.2. FEATURE-SUM-UP 39

3.2.4 Tested Client OSs

The following table lists the already tested client OSs.

Distribution ctys GUI
GROUP DF CF X11 WM

X11 Xinerama Gnome KDE fvwm xfce ffs.

BSD
DragonFlyBSD-2.10.1 X X X X * X X X -
FreeBSD-7
FreeBSD-8 X X X X * X X X -
NetBSD-5.2 X X X X * X X X -
OpenBSD-4 X X X X * X X X -

Linux
CentOS-5 OK OK OK OK OK OK X X X
CentOS-6 X X X X X X X X X
Debian-5-lenny OK OK OK OK OK OK X X X
Debian-6-squeeze X X X X X X X X X
Enterprise-Linux * * * * * * * * *
Server
Fedora-8
Fedora-10 X X X X * X X X X
Fedora-12 * OK * OK * OK * - *
Fedora-13 * * OK OK * OK * - *
Knoppix X X OK OK * OK X X X
Mandriva-2010 * OK * OK * OK * * *
Scientific Linux OK OK OK OK * OK OK - -
openSUSE-11.2 OK OK OK OK * OK OK OK OK
openSUSE-11.3 * * * * * * * * *
RedHat-Linux * OK * * * OK * * *
Server 5.5
RedHat-Linux * * * * * * * * *
Server 6.0 beta
Ubuntu-6.06.1-dapper
Ubuntu-7.10-gutsy
Ubuntu-8.04-hardy OK OK (OK) OK OK OK OK OK
Ubuntu-9.10 X X X X X X X X X
Ubuntu-10.10 X X X X X X X X X

Hypervisor-Distributions
ESXi
ESX X X X X * X X X X
XenServer-5.5.0 X OK X OK * OK X X OK

Table 3.15: Getestete ClientOS

40 CHAPTER 3. FEATURE SPECIFICATION

Distribution ctys GUI
GROUP DF CF X11 WM

X11 Xinerama Gnome KDE fvwm xfce ffs.

MS-Windows(TM)
Windows7(TM)

Table 3.16: Getestete ClientOS

3.2. FEATURE-SUM-UP 41

Distribution ctys GUI
GROUP DF CF X11 WM

X11 Xinerama Gnome KDE fvwm xfce ffs.

Apple(TM)-OS
Mac-OS * * * * *

Solaris(TM)
Solaris-10 * * * * * * * * *
OpenSolaris-2009.6 X X X X * X X X X
ILLUMOS * * * * * * * * *
Nexenta * * * * * * * * *
OpenIndiana * * * * * * * * *

Windows
MS-Windows-NT
MS-Windows-2000 * * * * * * * * *
MS-Windows-XP * * * * * * * * *
MS-Windows-200x * * * * * * * * *

Smartphones
Android * * * *
MeeGo * * * *

Embedded
QNX * * * - - - - - - *
uCLinux * * * - - - - - - *
FreeRTOS * * * - - - - - - *

Table 3.17: Getestete ClientOS

17Kein WoL.
18Einige Einschränkungen bei LIST.
19Unter ausschließlicher Kontrolle des hypervisors. Getested mit diversen Versionen, z.B. Windows-NT-Server, Windows-

2000, und Windows-XP.

Chapter 4

Claimed Inventions

Related to IP/SW-Patents it has to be mentioned now, that this software and the im-
plemented concepts were first released on January 2008. The software as a result of my
self-sponsored work, is owned solely by myself and donated to the public based on GPL3.

4.1 First set - 2008.02.11

VM-Stacks
The basic building block for stacked VM handling, including some of the advanced
multi-ISO-Layer-address-handling and the derived technologies within this software.

The whole theory and technology, as well as the concepts of the designed and imple-
mented, and as upcoming described feature previews.

Management of nested stacks of Virtual-Machines
The concepts, design, and implementation of the escalation of dependent and remapped
state change actions for virtual and/or physical machines, when additional single or
nested virtual instances are operational. The state change propagation by remapping
to appropriate states when propagating into upper layer.

Appliances as ordinary SW-Components
The concepts, design, and implementation of the usage of a huge amount of virtual
machines on bulk-core-CPUs with hundreds or even thousands of cores, where due to
expected future processing power enhancement this heavily seem to become to be used
in a very ordinary manner.

Thus the potential is even the replacement or better extension of ordinary system pro-
cesses by virtual appliances. Offering a much more flexible design and operational base
for network relocation, component based availability enhancements, and encapsulation.

Integrated self-reconfiguring Network Management Interfaces
The "Integrated Management Interface for self-reconfiguring Network Management Sys-
tems applied to VM-Stacks" contains the concepts, design, and implementation of the
usage of an attached functionality to ordinary graphical icons, but positioned on the
screen in order to represent the physical or logical structure of a networked environ-
ment for VM-Stacks. Therefore an machine interface is defined, as a case study based
on Nagios, where a via CLI started managed entity, which could be a virtual machine
and/or a physical machine, registers itself by usage of a specific differentiated icon as a
dynamically attached entity.

43

44 CHAPTER 4. CLAIMED INVENTIONS

This will provide multiple views, particularly a view representing the nested containment-
like execution stack in various views itself. Therefore a tree-view, a nested boxed-view,
and a staple of bricks-view is defined.

Independently from this additional VM-Stack-View, any networked entity is represented
by it’s secondary logical nature as an ordinary networked device, which transparently
covers the primary characteristic as a virtual entity.

Load distribution of stacked virtual machines
The concepts, design, and implementation of the usage of an system in order of evalu-
ation COST values for load distribution within nested entities.

Even though the overall CPU could be measured by monitoring the lowest container
within the stack, this is not necessarily true for management of resources accessed by
software applications from within virtual entities on higher levels of the stack only. This
is frequently true, when a common network platform e.g. by Linux OS is defined with
additional virtual instances as "worker-entities" only. When e.g. scanners, printers, or
other devices are supported as a fabrication group with load distribution, the overall
load of the stack base has no relevance to the FIFO character of the required resources.
Thus any stacked element could have it’s own constraints of several types, which is not
visible outside the entity itself. This particularly could appear when e.g. embedded
systems are simulated by usage QEMU for CPU simulation and execution of eCos or
uCLinux, whereas the QEMU instance itself is executed within a so called DomU of
Xen.

Performance Enhancements for address resolution
The applied technologies for replacement of highly sophisticated address resolution by
so called Attribute-Value-Assertion as commonly used within CMISE/CMIP/Q3 and
SNMP environments for structured access to data, are claimed to be independently
invented by myself and donated to the public by GPL3 too.

This technology comprises the pre-assembled generation of specific table entries with
seperated fields which are handled as a single entity for cascaded application of regular
expression based simple matching filters. This pattern-matching on flat records lead
to same data-results as huge ASN.1 based approaches, but does require a minimum of
effort.

The advance uprises from the combined handling of the overall record for flat-matching
by regexpr and the read-out of data based on structured records by fields. Particularly
the opportunity of chained filter application on the intermediate sets of results leads to
quite good matching results with more than satisfying overall performance.

The practical application advantage is that the almost "trivial" framework of common
UNIX base-tools are required only and the average access time still remains within
milliseconds even when using bulk PC components and implementing it as part of this
software, by a simple awk-script.

Component-Oriented bash usage
The consequent utilization of components as dynamically loaded components similar to
"shared libraries/objects" by "sourcing" seems to me to be a new first-time approach.

4.2. SECOND SET - 2008.07.10 45

4.2 Second set - 2008.07.10

Vertical-Stack-Operations
Maping of each task affecting a single "row" of Stack-Operations targeting a unique VM
as a destination into it’s own execution context by technically defining a specific con-
troller process (see Section 13.3 ‘Hosts, Groups, VMStacks and Sub-Tasks’ on page 120
).

The controller may keep control as a classical CONTROLLER and distribute any task
related subtask by itself, or it may forward the responsibility in a NESTED manner for
each next step recursivley to an instance natively executed within the current "upper-
most" stack instance.

Grouped-Stack-Operations
In advance of mapping each single "row" of Stack-Operations into one task, Wildcards
in - recognition of vertical depency - may be applied, in order to support an expansion
for specific levels. The expansion of the set and/or wildcard on each Stack-Level must
guarantee the availability of the founding peer for each entitiy to be activated within
the next layer.

Stack-Capabiliy-Evaluation
The current approach is targeting a heterogenous set of hypervisors to be supported
by a single and almost unique interface. Therefore a common set of operations in a
minimalistic-approach, called ACTIONs is defined, which almost provide an identical
syntax.

Particularly the intermixed usage of various combinations within a single VM-Stack
requires rises some compatibility issues to be considered by the system tools. An ap-
proach of demanding the user to interact on it’s own absolutely semantically, correct
including recognition of actual resource exhausts seems not to be appropriate.

Thus within an cache database - th cacheDB - as the central knowledge base, several
attributes are defined, in order to assure an automated static and dynamic verification of
the call-compatibility including the resource-availability-compatibility of stacked VMs.
The most important attributes are:

STACKCAP
The offered stack capability for upper entities.

STACKREQ
The required stack capability for execution base entities.

HWCAP
The offered either physical or virtual hardware capability for upper entities.

HWREQ
The required either physical or virtual

Each of this attribute will be in addition available as a dynamic runtime variant assem-
bled initially during each startup. The contained subrntries are assemblies of various
specific attributes, representing partial capabilities for various tasks. Thus the more
or less static execution verification is supported as well as some sophisticated distribu-
tion algorithms. This include the dynamic variation of startup-assigment of available

46 CHAPTER 4. CLAIMED INVENTIONS

resources such as the Virtual-RAM and the number of Virtual-CPUs in case of VMs, as
well as detection of specific HW-requirements, e.g. in case of local-only available scan-
ner or ICE for embedded development. Almost any pre-requisite could be customized
and handeled by the implemented code.

Even though this requirement is expected to be identified and solved before, the con-
sequent application of stacked VMs is as far as known a first time approach described
originally within this document.

A secondary, not less important application is the reloaction of active VMs, even be-
tween different hypervisors/VMs. This frequently requires some specific hardware and
of course hypervisors to be available. The presented and implemented approach even
supports a fine-grained definition and recognition of version and subversion definitions
for each component. This could be within the available implementation easily cus-
tomized.

Related technical process-modells as first-time-invented could be reviewed, tested, and
applied by the supplied code under GPL3 license.

Virtual-Circuits
Virtual-Circuits is seen within the UnifiedSessionsManager as a seamless integrated, to
say inherent, facility in order to establish a typical relay based peer-to-peer communi-
cations line. This is performed in a multi-layer approach with an top-level peer-to-peer
encryption assuring the exclusion of intrusion capability on any intermediate section-
relay.

This approach seems not to be new, as shows a similar for example presented by the
very impressive overall approach on [133, VIRTUALSQUARE].

But the independently developed degree of integration into an actually available utility
comprising a concept for handling almost any aspect of user sessions, with various
connection and Client/Server location types, is - even though still far from beeing
perfect - the first time approach as far as known.

4.3 Third set - 2010.05.12

Dynamic Desktop Assembly by generic Addressing
The dynamic address schema of the UnifiedSessionsManager - particularly the LABEL
feature - supports for persistent storage of runtime DISPLAY identifiers, thus it is pos-
sible in a easy to use and generic manner to set up static pre-configurations as well as
add dynamically GUI elements to a running desktop.

This is particularly applied by the two approaches:

1. suboption-VNC-CREATE: VNCDESKIDLIST
Setting up preconfigured elements of a desktop created by VNC could be used to
dynamically assemble required elements - and remove them - as required. This has
particularly advances for setup of complex environments in development and test
environments, where complete test-cases could be setup by on-demand assembly of
their runtime components.

4.4. THIRD SET - 2010.05.31 47

For VNC this is utilised by a two level approach:
(a) Setup desktop-elements within ’HOME/.vnc/xstartup’.
(b) Use call interface of VNC plugin with suboption VNCDESKIDLIST for CRE-

ATE.
2. option: ’-D <DISPLAY|LABEL>’

Setting a local-only new DISPLAY for output for each call. Particularly applied to
the VNC plugin by any GUI-Producing plugin.

The particular advance is the persistency support for arbitrary dynamically allo-
cated desktops by support of the LABEL feature. The LABEL is evaluated and
mapped to a numerical DISPLAY value at runtime, when called. Thus this pro-
vides a simple facility for preconfigured desktops by usage LABELs for addressing
only, this could be applied to GROUP and MACRO feature.

Full-Custom-Installer for VM-Setup - Client-Aware
The setup-tool ’ctys-createConfVM’ provides a complete setup resulting in from-the-box
ready-to-use VMs, particularly including all relevant client information for the off-line
inventory management of the complete VM.
This includes the assignment of required MAC and IP-Addresses fully automated from
the integrated database by usage of ’ctys-vhost’ and/or ’ctys-macmap’. These tools
could be used by fully-automated extracting the required data by usage of ’ctys-extractMAClst’
or ’ctys-extractARPlst’.

The full-custom approach is currently applicable for the QEMU/KVM and XEN plug-
ins.

Any additional
- designed and implemented within the current version.

4.4 Third set - 2010.05.31

Integrated addressing of multihop-tunnels
The addressing scheme is extented to the multi-hop routing of relay based connections
for automatic path calculation and basically routing-protocol independent interconnec-
tion. This schema particularly integrates into the ctys-addressing, where e.g. multi-
target distribution of one execution call by usage of GROUPs is supported.

Chapter 5

Secure Sessions

The basic idea behind ctys is to support a common access framework for a combined envi-
ronment

• intermixed with multiple OS(Unix, Windows)

• running on distributed and intermixed

• physical and virtual platforms.

Therefore some common software plugins like VNC, X11, XEN, SSH, Kerberos, LDAP and
automount are combined together by usage of ctys in order to supply simplified creation and
transparent access to sessions.

The management of the sessions client windows on X11 based desktops is supported broadly,
by the extension of the X11-geometry option. This comprises the geometry parameters as
well as the intuitive addressing of sessions by their visible GUI-Windows-Titles.
The resulting calls could be particularly for pre-set default values quite simple:

ctys -a CREATE=label:COSOLE,REUSE host01

This line first checks on the host01 whether a VNC session with label "CONSOLE" is already
running. If so, a server-local vncviewer is started and connected to that server-process. The
whole connection, including the display forwarding is established through an SSH tunnel.
When no session with given label exists, a new one is started and connected to a vncviewer.

Next example starts a VMware-Workstation/Server/Player with native gui on the host
"host01".

ctys -t vmw -a CREATE=fname:’vmware/openbsd-001.vmx’,\
REUSE host01

or

ctys -t vmw -a CREATE=id:’vmware/openbsd-001.vmx’,\
REUSE host01

or

ctys -t vmw -a CREATE=label:OpenBSD-001,REUSE host01

The Last three examples are executed with the identical vmx-file, if "label:OpenBSD-001"
matches "displayName" within "fname:vmware/openbsd-001.vmx", which will be searched

49

50 CHAPTER 5. SECURE SESSIONS

by "find" command.

One of the basic advantage is the comprehensive unification of addresses for sessions with
the introduction of a common addressing layer. This assures a common means of direct or
indirect user defined LABELS as an alias for usage as sessions identifier. The mapping will
be done completely dynamic, so no persistent extra database is required. Mapping for VMs
is based on their various "name-entries", e.g. the Domain-Name or the Display-Name. The
LABEL is forced to be visible on several places, so it is used as call option, windows title, or
if no otherwise possible as a masked comment on CLI, still visible with ps-command. Due
to usage as window title it is visible in the taskbars of most destop managers.

These LABELs will be used for the "ssh-tunnel" call too, so a simple ps will show which
"tunnel" is related to which session, displaying it’s ports and various sessions parameters for
"-L CONNECTIONFORWARDING".

In addition some extensions are available, like using UUIDs, MAC-addresses, TCP/IP-
addresses for addressing of VMs. This could be used by defining path prefixes for "find
and scan" options, which even allows the move of VMs without change of addressing.

Another point to underline here is the "-b" option, which internally leads to a call of ssh with
it’s "-f" option. The "-f" option of ssh handles forking of processes to background operation
after required authorisation dialog, such as password entry when no SSO is provided. So,
the "-b" option forces the ssh-client into background operation for immediate release of the
current console. Do not use "&" instead. For additional information refer to "-b" option.

5.1 Xinerama Screen Layouts

The most of the following examples are based on the monitor array described here. Each
screen is configured as 1280x1024, with the following ServerLayout. The Identifier="Layout[all]"
is as default of Gnome/Xorg, but any number of specified ServerLayouts as supported by X11
is applicable and could be addressed of course. Any number of Screens in any combination
and mapping, as well as related indexing is supported.

REMARK:

1. There is some minor limitation within this version. This is due to the calculations
of screen positions for logical addressing screens by their numbers or labels - see
"-g" option of ctys.

The keywords for configuration of X11 - such as "leftof" - are not supported within
the so called "geometryEx" internal position calculations for logical screen address-
ing.

Therefore the absolute screen positions as numerical values have to be used within
xorg.conf. This is e.g. the default for CentOS based distributions and current
versions of NVidia utilities.

2. The usage of "-" as minus for screen positions of geometry is not supported in this
version.
This seems not to be a real thread, because the supported platforms have positive
absolute positions only.
Relative addressing from a viewpoint other than the standard (0,0) is not supported.

5.1. XINERAMA SCREEN LAYOUTS 51

In the following sections describe the reference ServerLayout for folowing tests.

5.1.1 Physical Layout-1

This example is a physical layout with several low-cost dual-port graphic cards, all screens
are attached to the same computer. The X11 operations mode is Xinerama.

Figure 5.1: Physical Multi-Monitor Layout-1

The actual hardware design shows an two-row layout, where the upper screens are foreseen
for monitoring tasks and temporary storage of working sessions, whereas the lower row is
the actual working area for development and testing tasks. Thus the upper screens are
17’-monitors, whereas the lower are of 19’-inch.

Figure 5.2: Physical Multi-Monitor Design

Logical Layout-1a

The logical representation of the previous physical layout within "/etc/X11/xorg.conf" is as
follows. The X11 operations mode is Xinerama.

52 CHAPTER 5. SECURE SESSIONS

Figure 5.3: Logical Multi-Screen Layout-1

The Xinerama mode represents all involved screens a one logical screen which could be
seamless accessed. Therefored the display size of the whole screen founding the "big-logical"
is the sum of the involved screens. The following screen-shot shows the previous example
from Figure 5.2 as screenshot, which comprises all partial screens.

Figure 5.4: Logical Xinerama Layout

In the current design it was choosen to configure each screen with the same size of 1280x1048
and accept a "whole" in the bottom-row.

The Screen numbering here was the original positioning on the first motherboard on the
used workstation with 1xAGP and multiple PCI graphichs cards. Each of which had 2 Ports
and GPUs, some were actually connected to one monitor only.

Based on this the cabling was designed and numbered, and of course installed in the "cable-
tree". These more or less fixes the connectors in the "bulk" of the cabling bundle.

Logical Layout-1b

The logical representation of the previous physical layout within "/etc/X11/xorg.conf" changed
as follows after required changing of the motherboard. This is due to the fact, that the new
motherboard has 2 PCIe and 4 PCI slots, whereas the old had 1 AGP and 5 PCI slots.
The slots are intermixed by their positions due to the assumption of the manufacturer for
utilization some SLI cards with oversized thickness. Anyhow, due to less importance of im-
ages processing itself only fanless and low-power standard GPUs with standard sizes are used.

The numbering order of the busses changed due to the different interconnection of chipset
and it’s busses and the physical positions of it’s slots, though the plugin positions. Thus the
physical positions of the logical X11 screen names changed too.

5.1. XINERAMA SCREEN LAYOUTS 53

Figure 5.5: Logical Multi-Screen X11-Remapping

So due to logical remapping of the screen positions it was not neccessary to reposition the
cables, but just to redefine some labels.

By manual configuration of names within "/etc/X11/xorg.conf" the above array could be
prepared for logical addressing.

One possible naming could be an 2-dimensional array simulating Index-Style.

Figure 5.6: Logical Multi-Screen X11-Array-Style

The final physical monitor array with it’s logical addressing is:

Figure 5.7: Physical Multi-Monitor Array-Style Addressing

54 CHAPTER 5. SECURE SESSIONS

Now the physical "Screen3", which became the logical "Screen1*", could be addressed as
"A00", the "Screen5*" as "A01".

label physical logical
A00 Screen3 1*
A10 Screen4 4
A20 Screen5 3*
A20 Screen6 6
A01 Screen3 5*
A11 Screen4 0
A21 Screen5 2

Table 5.1: Mapping schema of labels to screens

These symbolic names could be literally used within ctys the "-g" options and it’s value
<geometryExt>.

Logical Layout-1c

In addition to addressing physical screens and positions, the full scope of GNOME desktops
is supported.

The workspace feature is utilized by usage of the tool "wmctrl". Thus a fully qualified ad-
dressing is provided by encapsulating the whole set of tools within a seamless view.

The following functionality is only available when "wmctrl" is installed appropriately, else
the optional path element of workspace is just ignored and the current visible workspace is
used.

Figure 5.8: Mapping schema for multiple Desktops/Workspaces

Desktops/Workspaces could be selected by their numerical index or literally by the user
configured string-representation.

Within the user supported labels of Desktops/Workspaces SPACES are not supported, and
the usage of SPECIAL CHARACTERS should be avoided, else the numerical ID could be
used only.

5.1.2 Physical Layout-2

This example is a physical layout with several low-cost dual-port graphic cards, which are
attached to multiple computers. In addition two touch screens are attached to the first
machine. The touch screens are supporting complex context specific User Interfaces for
quick decisions of applications operators. The size of the monitor only screens are given as

5.2. CLIENT-SESSION WINDOWS 55

1280x1024, whereas the sizes of the touch screen is Screen8(1048x768). The Number of the
screens is just limited by processing capacity.

Figure 5.9: Physical Multi-Monitor Layout-2

This configuration is in current version supported by means of the package Xdmx, which has
to be pre-configured. Based on this configuration the virtual screen - e.g. in Xinerama-Mode
- will be managed by ctys.

5.2 Client-Session Windows

This section handles primarily the functionality related to visual layout on the desktop. Even
though the type of session involves in cases of a virtual machine the startup and/or con-
nection to that, this will be focused in the next chapter, the visual aspects are reviewed here.

So the following basic configuration is the standard case to be handled. It represents a
close peer-to-peer relation of a client initiating the session and a server which hosts the
applications a.k.a. XClients. In this case the Client only serves as a thin client which just
executes the vncviewer. Two standard cases are supported. First, the Xserver and Xclients
for the application are all together located on the server. Second, the Xserver located on
the server, whereas the Xclients is started on the client. In both cases the communications
is performed port-forwarding feature of ssh.

56 CHAPTER 5. SECURE SESSIONS

Figure 5.10: Basic handling of client sessions windows

Setting up a layout based on xorg.conf-entries will be done for example by the following call:

ctys -t vmw -a CREATE=’f:vmware/openbsd-001.vmx’ \
-g "600x400+2660+100" host01

This Starts a VMware-Workstation/Server session on a Xinerama group with offsets and
size given by "-g" parameter.

The given values yield to a GUI-Window on "Screen5" with Index=5 which is in the offset
range of +2600+100. The upper left corner has the coordinates (2560,0), thus window is
positioned with an relative offset of (100,100)=+100+100. Starts a VMware-Server session
on a Xinerama group with offsets and size given by "-g" parameter. The given values yield
to a GUI-Window on "Screen5" with Index=5. The upper left corner has the coordinates
(2560,0), thus window is positioned with an relative offset of (100,100)=+100+100. Same
could be now given in one of the following ways:
FullyQualified Screen-Addressing by labels from xorg.conf.

ctys -t vmw -a CREATE=’f:vmware/openbsd-001.vmx’ \
-b on -g "600x400+100+100:Screen5:ServerLayout" host01

Qualified Screen-Addressing by labels from xorg.conf, using the default for missing Server-
Layout, which is defined as "take the first section".

ctys -t vmw -a CREATE=’f:vmware/openbsd-001.vmx’ \
-b on -g "600x400+100+100:Screen5" host01

Same as before, but using the numerical index of the screen instead of it’s label.

ctys -t vmw -a CREATE=’f:vmware/openbsd-001.vmx’ \
-b on -g "600x400+100+100:5" host01

Things become even easier when using default sizes, which is the full-screen. The following
opens a VNC session, which is the default for the "-t"- sessionType-option.

ctys -b on -a cREaTe=’l:CONSOLE’ -g ":5" root@host01

5.3. BULK ACCESS 57

or

ctys -b on -a CrReAtE=’l:CONSOLE’ -g ":Screen5" root@host01

or

ctys -b on -a CrReAtE=’l:CONSOLE’ -g ":Screen5" -l root host01

REMARK: Keywords are case-insensitive and handled internally with uppercase for key-
words only.

The previous examples open a session window of a vncviewer for a VNC session and set the
title to "CONSOLE". The login is performed as the user "root@host01" of course.

Another build-in feature of VNC-sessions is the stateless operation, and the automatic
session-takeover by another login. Thus the shift of a Client-Window to another position
on screen or to another machine is performed on-the-fly when the new one is opened. No
additional user interaction for takeover is required.

Following opens the same window on "Screen3" and closes old one on "Screen5" with new
sizes.

ctys -b on -a create=connect,id:1 -g "300x300+500+600:3" \
root@host01

Conditional connect or - if not present - creation is supported too by the "REUSE" flag of
the CREATE-mode.

Following creates a new window on "Screen4"(assuming this is a new session).

ctys -b on -a create=l:TST1,REUSE -g "300x300+500+600:4" host01

Following opens the same session in another window on "Screen5" and closes old one on
"Screen4" with new sizes.

ctys -b on -a create=l:TST1,REUSE -g "300x300+500+600:5" host01

That’s it related to desktop layout.

5.3 Bulk Access

This features enable the access of multiple targets with one call. The build features are
particularly helpful for installation or update of this tool, start standard sessions - e.g.
CONSOLE - on multiple hosts for the current(which is DEFAULT) or a given user. When
"-t" option is not supplied the default "VNC" is used.

ctys -b on -a create=l:CONSOLE -l user01 host01 host02 host03

Another approach is to start a defined number of sessions on each machine:

REMARK: The number is currently limited to maximum=20 for each target.

ctys -b on -a create=10,l:CONSOLE -L SERVERONLY \
host01 host02 host03

Which makes 30 sessions for current user, but due to "-L" option no clients are started. Just
the VNCserver is executed. The label will be indexed in this case by an incremental postfix
unique within current session.

58 CHAPTER 5. SECURE SESSIONS

ctys -b on -a create=connect,id:1,id:2,l:CONSOLE,id:9 \
host01 host02

This connects to the sessions on each of given host.

Each host could be set individually with any option available, particularly individual "ge-
ometry" parameters are supported.

For any VM based session several addressing schemas are supported, so e.g. the following
call searches a given base directory for vmx-file for the given UUID and when matching it
the VM will be started:

ctys -t vmw \
-a create="uuid:01123...123",base:vmware/dir2,RECONNECT \
-D admin \
-g 800x500+100+400:5 \
-L CONNECTIONFORWARDING \
-W \
host01

That’s what happens behind the scenes:

• Due to RECONNECT any locally running client will be terminated, on the server(host01)
and on the callers machine.

• On the caller machine, due to the "-L" option causing the client to be executed on the
local machine and "digging an encrypted tunnel" to the server.

REMARK: Currently requires VMware-Server locally and remote, will be checked during
init, and rejected if not.

• The window of the client will be started on the desktop named by the user as "admin"
due to "-D" option. Alternatively the numerical ID could be used.

• The size and position of the window will be set by "-g" option as defined by geometryEx-
tended, which is X11 geometry semantics(for now only ’+’ are allowed). In addition
the screen number of "/etc/X11/xorg.conf" will be used for the offset.
Following an display of the clients window with size "800x500" on screen 5 with the
offset of "+100+400".

The server resolution is set by default to the viewer size.

REMARK: Requires the deactivation of Edit->Preferences AutofitWindow and AutofitGuest,
otherwise the position is only set.

Almost any supported option could be set for specific hosts only, superposing the current
state:

ctys -t vmw \
-a create="uuid:01123...123",base:vmware/dir2,RECONNECT \
-D admin \
-g 800x500+100+400:5 \
-L CONNECTIONFORWARDING \
-W \
-- \

5.4. ENCRYPTION AND TUNNELING WITH SSH 59

host01 \
host02’(-t vnc -a create=connect,i:2 -g :4)’ \
host03’(-t vnc -a create=connect,l:CONSOLE \
-g :3 -r 1600x1280)’ \
host04’(-t vnc -a create=l:TST,REUSE -L DF)’\
host05’(-t vnc -a create=l:TST -L SO -r 1280x1024 -W 1)’

• host01 Created as before.

• host02 Connects a local vncviewer to VNC session with ":2", and opens a window on
desktop "admin" screen #4.

• host03 Connects to VNC server with LABEL="CONSOLE" and opens on screen #3.
The server resolution is set to "1600x1280", whereas the viewer size remains as "800x500",
thus scrollbars appear.

• host04 Creates if not present, a 3 new sessions, naming them "TST001, TST002,
TST003" and running the vncviewer with "DF=DISPLAYFORWARDING". If e.g.
the session ":2" is already present it will be reused, else created.

The server resolution is for newly created sessions still set to "1600x1280", whereas
the viewer size remains as "800x500", thus scrollbars appear. This is due to chained
superposing without reset.

• host05 Similar to host04, but now no client is started (SO=SERVERONLY) and already
present servers lead to an abrupt cancel of execution. The already created sessions still
continue to be executed, no automatic cancel for partial jobs is applied.

The window will be displayed on desktop "#1", which might be different or not from
the desktop as labeled "admin" by the user.

For additional examples refer to the chapter "EXAMPLES-BASE" or use the online
help for displaying the EXAMPLES only:

ctys -H "EXAMPLES

For additional description refer to the options itself.

5.4 Encryption and Tunneling with SSH

Due to security reasons OpenSSH is the only supported connection type. This provides the
seamless integration into KerberosV as well as the integration with X11-based user interfaces
by providing connections via encrypted tunnels for remote displays.

Thus currently the following two constellations of encrypted communication channels with
the related port-forwarding are supported.

60 CHAPTER 5. SECURE SESSIONS

5.4.1 DISPLAYFORWARDING

Figure 5.11: DISPLAYFORWARDING

DISPLAYFORWARDING
The whole set of applications processes including the virtual peer-Xserver of the ap-
plication will be performed (virtually) on the server, whereas the client is in this case
conceptually a ThinClient.

Concerning the application of SSH, the connection will be established as a channel of
an active user session and will be closed when the user closes his session.

No additional precautions for the termination of the ssh-tunnel is required.

5.4. ENCRYPTION AND TUNNELING WITH SSH 61

5.4.2 CONNECTIONFORWARDING

Figure 5.12: CONNECTIONFORWARDING

CONNECTIONFORWARDING
The advantage - if required so - is in this case, that the client process is executed on
the client machine and the communications by the applications protocol only will be
forwarded to the server-process/machine. In case of efficient protocols this is clearly an
advantage for restricted-bandwidth communications channels.

Mainly two issues result of this:

1. The usage of Connection Forwarding requires the establishment of an ssh-channel
explicitly. This results in some port calculations in a multi-client-to-multi-server
environment. The requirement is caused by the local-only uniqueness of the port
assignments on the involved nodes for the majority (if not all) of involved applica-
tions/tools.

2. The second drawback is the required explicit cancellation of the port-forwarding
tunnel. This could again be defined in several ways. For now a complete dynamic
allocation of session-attached allocation of ssh-tunnels is defined. Thus these will
be terminated with the session consequently.

62 CHAPTER 5. SECURE SESSIONS

5.4.3 Execution-Locations

The following options are related to control of clients execution, execution-location, and
interconnection.

-L "CONNECTIONFORWARDING" Executing a local client and forwarding its port
from local access to the remote by SSH(ssh -f -L).

-L "DISPLAYFORWARDING" Executing client and server on remote machine and just
forwarding the display to local XServer by SSH(ssh -f -X).

-L "DisplayRedirection" This case is similar to Display Forwarding, but redirects the
display to another XServer running locally. Remote redirections are withdrawn. The
primary intention is to concentrate consoles of multiple sessions started independently
within the same PM on specified virtual desktops like VNC.

REMARK: This feature is currently under developement and might not yet be avail-
able.

-L "SERVERONLY" Starts the server only, no client is started. A client could be at-
tached later by ’-a connect=...’ option. This could be performed either by Display
Forwarding or by Connection Forwarding.

-L "LOCALONLY" Starts the server and the client on local callers machine. So no remote
connections and thus no SSH is applied.

Chapter 6

Advanced Features

In addition to the standard CLI for addressing explicitly only one specific task by all it’s
parameters some features are provided, which ease the daily usage. These are mainly

Group Objects
for handling sets of targets by an alias comprising the whole set

Customized interfaces by MACROs and TABLEs

Parallel and Background Processing for Bulk Targets

6.1 Bulk Access

Additional to supplying multiple targets just called one by one, ctys supports the concept
of groups . A group could be simply defined by creation of an ordinary file containing an
arbitrary number of host names or nested include assignments.

The literal name of the group file could be used as a fully functional replacement of any
<execution-target>. Multiple group names are supported as well as intermixed group names
with host names.

6.2 CLI-MACROS

The MACRO feature supports the usage of a predefined string alias as a literal replacement
within any position of the CLI call.

Thus a macro can contain any part of a call except the command itself. The whole set of
required options including the execution target or only a subset of options could be stored
within a macro in a defined file. MACROs could be nested and chained as required.

6.3 Generic Custom Tables

Several actions, particularly the GENERIC class of calls LIST, ENUMERATE, SHOW,
INFO support data to be displayed in multiple specific views. The same applies for some
support tools, particularly "ctys-vhost". The views may vary form task to task and should
emphasize different topics.

Therefore the output could be adapted by the user with generic tables, which support a
simple syntax with required minor knowledge only. These custom calls, which are based on
a suboption for the specific action, could be stored as a MACRO and reused later by it’s

63

64 CHAPTER 6. ADVANCED FEATURES

shortcut.

The recursive MACRO resolution supports for modularized table definitions which could be
reused within the same ACTION, but due to canonical standard parts of some ACTIONS
as LIST and ENUMERATE, also partly within multiple ACTIONS.

6.4 Parallel and Background Operations

The implementation of ctys supports for several measures in order to enhance the overall
performance and reduce the individual response time.

The data to be handled by ctys is actually of two different characteristics, pure dynamic,
and static. These aspects are coverd by the LIST and ENUMERATE action. Where the
LIST action displays the primarily dynamic data, almos in realtime or better in neartime.
The static data is displayed by the ENUMERATE action, which handles data preconfigured
by the user, representing an almost static VM.

Despite the nature of the data, the collection of the instances could be designed with various
concepts. The data collector could operate sequential or parallel, can do this in a syn-
chronous or asynchronous mode, occupy the callers teminal in forground mode or release
it when going to background mode. Additionally the data could be cached for combined
operations on multiple targets, or just for a later reusage.

The UnifiedSessionsManager supports all of this. The two relevant flags are "-b" and "-C"
for the ctys call, which control the combination of these operational modes.

The user defined setting of these flags might not be required often, because for each action
an almost for any case appropriate default is pre-set.

Some demonstrations of performance impacts with wrong settings are given in the Sec-
tion ?? ‘??’ on page ?? .

A specific ordering effect for displayed data occurs for collecting actions with prefix output
to be displayed, when no caching is active. Examples for this are LIST , ENUMERATE ,
SHOW , and INFO , when a table-header has to be displayed first. Therefore the following
has to be considered:

• The basic operation, when no file-caching is active, is to display results immediately
within the callers terminal. This could be intermixed in case of multiple jobs executed
in parallel . Therefore the output is performed in units of lines, where each line is a
seperate record of the output table.

• Due to the immediate display, a required preamble, e.g. a table-header, has to be dis-
played BEFORE the start of the collector-jobs when no file-caching is active. This is
proceeded within the PROLOGUE section of jobs.

As a result from this behaviour any output of the collector-jobs is displayed AFTER
the preamble, e.g. the table-header. Any password request dialogue is displayed also
AFTER the table header. So the display of requested and non-requested output from
the several collector-jobs is intermixed after the display of the preamble.

6.5. CUSTOM DESKTOPS - PRE- AND POST-CONFIGURATION 65

This inherent behaviour can only be changed with usage of a file-cache.

Anyhow, the file-cache has the prevailing condition, that the data is started to be
displayed, and will be displayed at once, AFTER all collecting-jobs has been finished.
This is on the other hand the inherent behaviour of a cached output.

• When file-caching is active("-C raw"), the display of data is performed AFTER the
completion of all collecting-jobs, therefore the preamble, e.g. the table-header is printed
within the EPILOGUE section of the job.

The main advantage of this is the collected output of any dialogue and error messages,
including any password requests of remote clients, BEFORE the requested output,
including a preamble like a table-header.

6.5 Custom Desktops - Pre- and Post-Configuration

Desktops as the main forcus and possibly most important building block of a User
Interface are supported as a portable object class by it’s own. In current version this
is based on VNC only. The desktop object is defined within the ctys as a collection of
coupled entities, founding an aspect oriented workspace. This workspace itself could be
combined with additional workspaces into a superior aspect.
The main container object class for GUI elements is currently the VNC plugin. The
VNC desktop itself could be assembled dynamically with additional GUI elements by
usage of the related DISPLAY variable to the targeted entity.
The following two forms of assembly are supported:

1. Semi-Dynamic Pre-Configuration
This comprises a custom configuration of the installed file xstartup with a ’case’ el-
ement in shell syntax, and additionally theCREATE suboptionVNCDESKIDLIST.
The latter defines a list of user-defined ’case’ elements, which are executed during
startup by the ’vncserver’ with a shell-subcall. The installed xstartup contains a
list with various operational examples.

This style of configuration provides facilities for pre-definition of a set of static GUI-
modules which could be combined by the applied VNCDESKIDLIST suboption.

2. Dynamic Post-Configuration
The dynamic post-configuration utilizes the -D option, which provides the setting
of the DISPLAY variable. The provided values could be either in native X11 syntax
for local addressing - without the leading colon, or a ctys LABEL could be applied.
The advance of the apllication of a LABEL ist the runtime independency, because
the dynamic assertion of DISPLAY IDs my vary from call to call. The usage of
LABELs provides the definition of independent MACROs.

Refer to the HOWTO-Manual for concrete examples.

Chapter 7

HOSTs - Native Access

Host sessions are general purpose sessions connecting a user with an arbitrary active in-
stance of an OS. A HOSTs session is actually a login with some additional processes for
remote access. The available standard HOSTs sessions are CLI, X11, RDP, and VNC. All of
these are supported to be accessed via SSH encryption only. The callee is executed by ssh
encapsulation.

7.1 Command Line Access - CLI

The CLI plugin supports a command line interface, which is executed native within the
calling terminal, no new window is required, nor supported. Additional remote command
execution is supported by specific suboptions.

7.2 Start a GUI application - X11

The X11 plugin supports the start of GUI based terminals or in general GUI based applica-
tions. Therefore any command could be executed on the remote target.

Due to the stateful operations of X11 client and server architecture "DISPLAYFORWARD-
ING" is the only supported operational mode. The asynchronous execution mode is the
applied standard.

The only supported connection type is an encrypted SSH channel with local access of X11
protocol only. Thus with the usage of ctys any X11 connection becomes a secure remote
connection with encryption provided by ssh.

7.3 Open a complete remote Desktop - VNC

The VNC package supports for complete remote desktops currently based on RealVNC(TM)
and the derived project TightVNC.

Due to the splitted client and server components this plugin supports "DISPLAYFOR-
WARDING" and "CONNECTIONFORWARDING". It could be used in this manner in
combination with any supporting VM. For example the required remote ports could be
statically customized or dynamically allocated.

67

Chapter 8

PMs and VMs - The Stacked-Sessions

The previous aspect of creating generic remote sessions to local and remote hosts is closely
related to remote start of virtual machines. In nowadays the distinction between physical
and virtual machines is getting lost. OSs like OpenBSD, NetBSD, or Linux could be even
installed in a VM running in a UNIX/Linux environment, customized and tailored as re-
quired, burned on a DVD or stored to Flash-Memory, and boot seemlessly with only minor
previous changes, running on almost any hardware.

The management of logical sessions to running OSs, either on a "Physical Machine" - PM or
a "Virtual Machine" - VM is the main task of the UnifiedSessionsManager. The differentia-
tion from all (known) existing solutions is the extended and formalized usage of stacked VMs
and PMs, where VMs are nested to logical stacks. Thus the offered logical and integrated
addressing of stacked VMs is the core advance uniquely provided by UnifiedSessionsManager
for now. It could be said, that the overall feature scope, particularly the integration as im-
plemented and availabale in present version seems to be the only and one available solution
on the market since first publishing at 10/2007 until now(05/2008).

Even though the construction of a logical stack of "physically" nested processes of VMs seems
to imply a deep nested-subprocess-structure with proprietary internal task-schedulers, this
actually is not the case. A modern OS should be, and is, able to dispatch it’s processes
and threads to any of the available CPU cores by various criterias. Thus a nested VM
stack is actually performed as a flat set of processes dispatched to available CPU cores, but
addresses in smart manner as a logical tree with groups of branches and leafs. This fact
becomes of real relevance, once the number of CPU cores is raised far above of 4 as available
for now. When the number of CPU cores raises, the software design could be extended by
the paradigm of "Virtual Components" - "v-components", which are complete appliances
used as encapsulated software modules with a communications interface only. Depending on
the type of the utilized hypervisor, these could be fully standalone VMs including the whole
GuestOS, or just a reduced GuestOS-stub for host-kernel based VMs.

Another approach which is partly available, is the setup of physical distributed CPUs to a
logical "single multi-core CPU" as a Virtual-Server. This approach is not extended within
the scope of this document for now.

Anyhow, current available CPUs with up to Quad-Core versions already provide means
which are definetly capable for several types of production environments which fit for vari-
ous specific applications.

Almost unlimited sizes of environments are applicable when a flat or just two-layered(PM/Xen-

69

70 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

Dom0+DomU) environment without(or less) emulation is utilized. This is the common case
for nowadays and fit’s for pure partitioning of machines with some failover resizing measures
perfectly. It is a quite good solution for simple encapsulation too. Within development
departments this is the perfect solution for setting up advanced and huge sized development
and test environments.

The actual stacking with emulated CPUs within another hypervisor, e.g. Xen, VMware,
or KQEMU/QEMU might be approriate on PC based machines for small to medium sized
systems only, which for sure will be extended soon. Typical applications in this field are
Cross-Compiling and Cross-Development in a "native" environment. Various CPU emula-
tions are available by QEMU.

The following stack models are supported beneath a PM-only model by the current version
of UnifiedSessionsManager.

Figure 8.1: Supported Stackmodels

Within this model each depicted upper layer element could be present in multiple instances
and can contain multiple instances of it’s upper-peer itself. Whereas it is contained in one
lower-peer only, of course. Thus this sets up a resulting tree structure.

Some hypervisors accessing Ring-0 components could be combined under specific condi-
tions, but are just draftly tested here. The basic idea is to combine "uncritical" components
for daily-production usage which could be maintained easily. Therefore the QEMU emu-
lator is combined onyl with a "kernel-touching" component, for the first release with one
of:KQEMU/QEMU, Xen, VMware(S/P/W)". The additional constraint for the actual avail-
able components is the only applicability of a hypervisor as the bottom element, whereas
emulators could be stacked above. Performance could be - not neccessarily has to (!) -
become a thread.

The actually implemented and tested models are "Xen-Based" and "VMware-Based", which
include "QEMU-Only-Based", when KQEMU is not applied. For the required proof-of-
concept only, the performance drawback of the absence of KQEMU on i386 was not an
issue. The actual production environment requires for several reasons "VMware-Based" and
"Xen-Based" anyhow.

8.1. SESSION-TYPES 71

8.1 Session-Types

When defining a system with various sessions, which comprise pure HOSTs sessions for con-
sole access, PMs sesssions, which manage basic entities containing others like HOSTs or
VMs, or VMs containing a full-scope virtualized entitiy, the distinction of several session
types is required for several reasons.

Obviously a modular and extendable software design could be grouped into components as-
sociated to several sets of functionality constituting a session type. Additionally some session
types like Xen or QEMU do not have their own frontend for console and/or GUI access, thus
for the actual design any of the so called HOSTs plugins could be combined with any other
plugin of types PMs or VMs for user access.

Another aspect is the overall design of a distributed access and resulting client-server archi-
tecture with probable application of virtual-circuits crossing multiple intermediate SSH-hops.
This scenario is particularly helpful when "piercing" a firewall via a gateway within one of
it’s DMZ.

The general design of the UnifiedSessionsManager is a single-code implementation as a
generic application which serves in a holomorphic manner for any required communica-
tions entity within the peer-to-peer circuit insances. Therefore the called client is exactly
the same code as the serving server instance. The whole process structure is implemented
as an on-demand-executable, thus no daemons are required. The UnifiedSessionsManager
serves as a distributed dispatcher and starter with basic management capabilities for cancel,
list and info. Some of the plugins are capable of remote execution of any own library call or
any external call when appropriate permissions are present.

Therefore the design requires some clear distinction between session types and their capa-
bilities when utilized within the various instances of a communications chain. For example
a Xen session type behaves on the caller site, where probably nothing specific is executed,
completely different than on the server site, where for example a DomU will be started and
a console - of another session type - is opened and just redirected by display-forwarding.

The interface for the definition of a session type is called "plugins" and alows for (almost)
easy implementation of any additional custom type. The integration is implemented by an
automatic runtime detection of present plugins and a self-initialisation of the components.
Generic actions like LIST and ENUMERATE are caller by wildcard mechanisms based on
a few name conventions for interface functions.

Following session types, a.k.a. plugins are available for current version.
For additional plugins refer to specific help of generic loaded modules.

The handling of the virtual machines is controlled mainly by the parameters "-t", "-T" and
"-a". Where "-t" defines the type of virtual and/or physical machine to be addressed, "-T"
the set of plugins to be loaded, which could be required additionally as subcalls or focus of
operations for generic collectors. For example LIST with "-T all" lists all actual running
instances, whereas with "-t vnc" or "-T vnc" onyl VNC session types are listed.

Due to an implemented dynamic load environment for bash plugins, only required plugins
are loaded by pre-defined static link-lists or dynamic by on-demand load. This is controlled
by the "-t/-T" options too. Refer to development documents for additional information.

72 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

PM/VM Description
CLI Command Line Interface.
X11 X11 caller.
VNC Native or virtual running OS accessed with RealVNC or TightVNC.
KVM KVM is actually design as an accellerator for QEMU,

and thus part of the QEMU plugin.
QEMU With VNC, X11, or CLI modules as remote

console. Additionally the SDL console is supported.
VBOX VirtualBox is going to be integrated within next version.
VMW VMware workstation, server, and player. With it’s own

proprietary console or VNC client.
XEN With VNC, X11, or CLI modules as remote console.
PM Physical machine access, supports Wake-On-LAN.

TUNNEL Internal subsystem supports implicit CREATE and LIST
of OpenSSH tunnels for distributed Client/Server-Split by
CONNECTIONFORWARDING .

Table 8.1: List of Standard Plugins

-t one type of session to be actually performed

-T list of session types to be preloaded, e.g. as supporting sub-features, particularly as a
specific type of console application.

The "-a" parameter defines the action to be performed within the choosen session type.

-a mode of action or access
For additional information refer to following options descriptions.

The handling of the sessions is - as mentioned above - splitted into a client and into a server
part. Therefore ctys will be executed locally and remotely, with specific context provided by
"-E". The executable itself has to be literally the same due to compatibility issues, this will
be assured by exchange version information. Some minor version-jitter may be accepted,
but is an internal feature only.

Therefore ctys has to be installed in compatible version on all participating peers. When
using a network account with a central HOME directory auto-mounted on each target, the
tool does not need to be copied, same for eventually accessed VM configuration within the
own directory tree.

The various session types, including all categories, have the same basic interface. The inter-
faces vary by their suboptions, which is required due to specific differences. Thus all support
the actions CREATE and CANCEL as their own exclusive top-level methods. The exception
here is the CANCEL method, which is not supported within current version for CLI and
X11 types as pure "console".

Additionally to actions on specific session types generic actions are available, which have
sub-dispatchers for calling sets of session types for display purposes, and generic methods
for retrival of information for specific target, which includes basic information about the
type of sessions plugin itself.

The generic sessions LIST and ENUMERATE work as collectors for a given set of sessions,
which could be displayed intermixed when requested by the user. LIST shows the current
actual runtime instances, whereas ENUMERATE collects information for stored sessions

8.2. VM-STACKS - NESTED VMS 73

from their configuration files.

The handling of usage of VNC as console client only for XEN, QEMU, and VMware is con-
trolled by the offered usage-variant only, not within the VNC plugin.

The actions INFO and SHOW display common data for the addressed target itself, thus the
data shown for session types - a.k.a. plugins - is the information of the operability of the
plugin itself, not the managed sessions.

INFO displays static data, such as version information and installed features. This includes
the runtime basis, which is the base OS and the HW. Therefore for example the virtualiza-
tion capabilities of the CPU (vmx, svm, and pae) are listed in companion with the RAM,
and some selected management applications like lm_sensors, hddtemp, and gkrellm.

SHOW displays the dynamic data, which e.g. includes a one-shot display of top output. The
health and by default present alarms as given by sensors are displayed too.

8.2 VM-Stacks - Nested VMs

8.2.1 Stacked-Operations

The operational environment of ctys is mainly focused on usage of stacked VMs, which are
actually nested VMs. Therefore the provided plugins support silently iterated operations on
running entities for actions where appropriate.

This means for example, that if the PM, which is the host anything is physical located on
and therefore "could be said depends on", will be CANCELed, the stack of VMs and HOSTs
sessions will be handeled by forward - here upward - propagation of the CANCEL call. This
will be handeled properly for any intermix, and of course has to be supported for custom
made plugins too. But a single and simple call interface is all to be used.

In case of CREATE basically the same propagation mechanism is provided, whereas logical-
forward means virtually downward for CREATE.

The stack-propagation strategy could be controlled by the common sub-options FORCE and
STACK. For details refer to the following chapters and the related options.

It should be mentioned here, that some specifics occur for generic actions in combination
with stacked operations.

The ENUMERATE method, which is a static collector, does not support stacked operations
for now. This is due to the requirement of a running instance to be ENUMERATEd of it’s
contained sub-instances. Thus the ENUMERATE method has to activate the whole upper
stack - permutated of course - when would be applied with automatic stack resolution. This
seems not to be a practical applicable behaviour.

Whereas the LIST method perfectly fits to a stacked operation as real gain of usability and
transparency for nested VM stacks, which are "perfectly" encapsulated by definition.

Thus it could be said as a rule of thumb, that static methods are not applicable to implicit
stack resolution for real systems due to the resulting bulk-activation. Whereas the dynamic

74 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

actions support essential benefit to the user on already running instances.

8.2.2 Specification of VM Stacks

One very basic idea behind the usage of virtual machines - VMs and physical machines - PMs
in a unified environment is the stacking of multiple instances. "Stacking" in this context is
more a nested execution, though the each layer is contained and hidden by it’s downstream
VM as it’s execution environment.

Therefore two views are defined in order to depict the layers and define their dependency.
The functional dependency is crucial for recovery functionality such as startup and shutdown.

The primary model visualization is similar to the B-ISDN model description by usage of
panes. In the context of VM stacks the definition is given as:

• vertical front view:
depicts PMs and VMs only

• vertical side view:
depicts the stack of OSs

• top pane:
depicts for each layer it’s contents

The following figure shows the pane view as a "3-dimensional" blueprint.

sl-0: The front-view lists the stack as nested containment hierarchy. Where on a PC-Base
- the PM-plugin - the OS Linux is operated, as depicted on the side-view. In this case
the Dom0 of Xen.

sl-1: The next layer is the an arbitrary DomU operating the OS Linux as depicted on the
side-view.

sl-2: The following layer is an "in VM" operated VM, which is a User-Space process emu-
lating an ARM-CPU.

The top-pane, which is the only visible, here shows the running entities os the topmost VM
and it’s operated OS. In this case it is an arbitrary application based on test packages of
QEMU-0.9.1 - "arm-test". I is executed on two layers of CentOS-5.0 in an Xen-3.0.3 envi-
ronment.

Just for completeness, the compilation of the QEMU version, due it’s gcc-3x requirement, was
performed within a SuSE-9.3 linux installed in a VMware-WS-6 version as a 32bit machine
on a 64bit CentOS running on a dual Opteron Server. The "make install" does not require
a gcc-3x, and could be performed with the standard gcc-4 installation on CentOS-5.0.
The arm-test version with ARM-Linux works from the box, but requires some network
configuration. The main pre-requisite is the configuration of TAP devices for sl-1, which is
described in the examples chapter. Additionally the eth0 device within the arm-test layer
sl-2 has to be configured by ifconfig only, which is sufficient.

8.2. VM-STACKS - NESTED VMS 75

Figure 8.2: Pane-View: QEMU-ARM in Xen-DomU

The following "2-Dimensional" ISO-like stack blueprint shows the dependency in a more
close view to peer-to-peer dependencies, required, when implementing protocols for stack-
management, which is very similar to implementation of an communications protocol.
This view is for example particularly helpful, when any kind of propagation has to be im-
plemented, as in case of a stack-shutdown.

Figure 8.3: Stack-View: QEMU-ARM in Xen-DomU

This is tested with the provided test-cases of QEMU and additional configuration scripts
as provided within the templates directory. The cases coldfire, small, linux, and sparc are
tested too. In order to interconnect that cases it is required to set install and configure
VDE and setup appropriate TAN devices with their interconnecting vde_switch. The IP
addresses of the eth0 device within the GuestOSs has to be set appropriately.

For additional information refer to the plugins chapter and the examples list.

The following case depicts the more common case for nowadays, where just one layer of VMs
is operated on a host - e.g. Linux. Multiple instances are operated within the only layer
primarily for server consolidation an supply of centralized services, e.g. for license sharing.

Figure 8.4: Pane-View: W2K in VMware on Linux

The related stack-view shows the communications dependencies for inter-layer management.

76 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

Figure 8.5: Stack-View: W2K in VMware on Linux

It should be recognized, that there are for now 3 models and more or less completely different
interfaces for the listed VMs.

Whereas Xen almost has no direct view from the Dom0 to the DomU, just by specific tools,
the VMware-VMs and QEMU-VMs could be listed by the ordinary "ps" command.

One particular advantage, which has some performance drawback, is the complete CPU em-
ulation of QEMU. This makes it to the perfect entity for a stacked application. The kqemu
module is for mixed CPU types not usable anyhow. This is e.g. one another difference, that
QEMU could be used within user space only for a complete emulation, the performance issue
might be solved within the next generations of CPUs.

The next difference is the CONSOLE access, which is proprietary with it’s own dispatcher
for VMware(or a static VNC port for WS6), whereas for XEN seperated VNC ports acces-
sible by independent "binds" exist.

But all of them fit into the model perfectly and are almost unified for their access by "ctys".

The previous figure as shown depicts the basic constellation for an nowadays common con-
figuration, where a single layer of VM on a PM supports a Cross-Platform functionality.

The Nested execution of VMs is officially "almost" not supported, by any VM, just by some,
providing their own hypervisor as base only.

The following figure depicts a constellation which successfully executed in lab. Even though
the performance was more than limited, the innermost boot finished after real-longer-while.
But anyhow, a successful login on the whole stack was performed.

Figure 8.6: Pane-View: Virtual PC with Linux in VMware

8.2. VM-STACKS - NESTED VMS 77

Figure 8.7: Stack-View: Virtual PC with Linux in VMware

Another field of application for nested VMs is the so called Embedded segment where con-
troller based applications dominate. Much of the applications are based on raw, but mean-
while on full-scale but lean Embedded-OSs. Some examples for this are the eCos and the
uCLinux project. OpenBSD for example could be used for ROM/DVD based applications
perfectly too, as many other variants.

The supported standard integration of QEMU offers ARM, MIPS, Coldfire, PPC, and
SPARC CPUs. Additionally some specific Evaluation Boards are modeled. For further
information refer to QEMU documentation. So this might give an idea of what is upcoming
within a not too long of period for shure. Once someone is getting familiar to the idea
of stacked VMs as a common SW-component, something similar to a deamon service, the
opportunities for resulting SW architecture and design might be almost unlimited.

One trivial aspect is the encapsulation of services by a more than clear message interface,
which might be a simple TCP/IP message protocol. This will be optimized for local access
by almost any available TCP/IP-stack. But the first real benefit for modularization now
arises from the widely support of physical online-relocation of VMs by almost any current
known Vendor and OpenSource-Project.

In difference to an ordinary daemon supporting non-relocatable services for example as
DNS/Bind, DHCP, LDAP, or a DB-server, a VM offers now a framework, which could be
utilized for online relocation of any contained service, which even will not recognize it’s re-
location.

For a service provider supporting services with SLAs this will be the what is required. Al-
most ANY proprietary service could be configured redundant and relocatable with an almost
100availability.

The scalability and online reconfiguration capabilities, as well as energy saving seamless
activation and deactivation of parts of physical equipment with on demand redistribution
of worker instances is just another example. This will be supported for the whole scope of
ctys-stack-addressing with partial addressing. Confusing, yes, but this is what ctys silently
provides behind the scenes - NOW. So just a simple path address in a very natural syntax
for a VM or HOST within a layered stack is all the user actually has to provide.

Therefore the network itself and it’s services now seems to become a much closer application
"component" for not highly sophisticated user, than before.

8.2.3 Bulk-Core CPUs

One important fact for the design is the expectation of upcoming for CPUs with much
more cores than available now, though offering partitioning capabilities even not available
on mainframes of nowadays. The time line could be 5 or more years, but the QuadCore

78 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

CPUs for now already perfectly offer required performance benefits for first stages of design.

The current available test and development environment with some outdated multi-cpu-
single-core CPUs match the requirements even when using some PIII-800MHz-Coppermine
for basic tasks. E.g. as a "driver encapsulation" for an undocumented, non-disclosed, and
outdated PABX-Monitor.

8.2.4 Almost Seamless Addressing

When using the currently available hypervisors and so called HOSTs sessions for intercon-
necting, almost any used component requires it’s very own style of addressing connections
and components.

Additionally the management of the states of an VM and of course a PM requires it’s indi-
vidual set of tools, each of which has it’s own philosophy. Some provide very specific and
additionaly multiple versions and variants with different command sets and features. So a
common namenbinding is more a daily user benefit than an academic discussion here. There-
fore a generic namebinding was defined, which supports all supported components with only
and one unified namebinding schema.

For the seamless and integrated management of VMs, PMs, and contained OSs, which are by
definition not aware of the virtual environment, and of course not the containing OS for the
VMs hypervisor, a multi-level addressing mechanism with a complete set of required toolset
is defined. The current process is ongoing to file the addressing schema as a standard, with
an open final state for now of course.

One specific benefit of the defined name-binding is the eas of management and addressing of
stack elements. This is valuable for the communications within an operational and enabled
system as well as for recovery procedures such as boot and shutdown, a.k.a. Startup and
Shutdown.

8.3 Stacked Networking

The required approach for networking within nested VMs has to pass the packets logically
"downward" to the "external exchange point" for distribution of the packets across the phys-
ical container of the VM-Stack. For a communications peer contained within the current
stack, the virtual circuit will be terminated without leaving teh stack of course. In order to
establish a TCP/IP connection each VM sets up a virtual NIC and a virtual interconnection
to it’s containing peer VM. Additionally the communications facility has to provide multiple
users where each user could have multiple VM interconnections.

This requirement seems to be provided most appropriate by the utilization of virtual bridges
in combination with TAP devices. This approach is very close to the networking structure
of Xen Xen-Wiki - Xen-Networking [114, xenWiki].
Therefore for each VM beginning with a PM a communications facility is recursively setup
as depicted in Figure: 8.8.

8.3. STACKED NETWORKING 79

Figure 8.8: Virtual interconnection structure

The implementation of this structure is described in Section ?? ‘??’ on page ?? and is
automated by the support-tool ctys-vnetctl. This tool supports particularly remote opera-
tions, thus the complete required network environment could be configured and removed on
demand from a remote station - for multiple physical machines and virtual stack-entities -
by just one call.

Once the required access permissions and the presence of the called system tools are in
place, the usage of this utility reduces the complete setup and final remove of the additional
network environment to a simple call and some seconds of processing.

This structure and the supplied utilities could be used and are prooven to work as a building
block to be combined for interconnection of all members of a stack in a recursive manner as
depicted in Figure: 8.1. Later developments might eventually extend the capabilites of this
first draft approach.

80 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

Figure 8.9: Nested Protocol Stacks

8.4 Stacked Functional Interworking

8.4.1 Stack-Address Evaluation

The basic schema of an action to be performed within an stacked entity is given by the
common concept of CLI partitioning into the action requested, and clearly sepereated from
this the execution target, where the requested action has to be performed.

Even though the following description is very close to a design specification, it is essential
to understand the implicit boot procedures of missing pre-requisites, and the resulting dis-
patch and parallel/background operational modes. Thus the following part is presented here.
Additional description with a call example and resulting process structure is presented at
Section 13.3.4 ‘Stacks as Vertical-Subgroups’ on page 123 .

The execution flow, as depicted in Figure 11.1 is handeled by the so called generic main
dispatcher. This is the part which is called in a chained manner on each actual executing
machine and acts as a hierarchical controller structure. The task data resulting of the re-
quested job and it’s expansion is depicted in Figure 11.2.

The main task dispatcher handles the execution target with a generic approach, where it
is aware of the address syntax and the optional present context options. The hierarchy
and therefore the startup and shutdown dependecy whithin the stack is also known to the
generic task dispatcher, but as a common pattern only. Thus the execution base could easily
be splitted into optionally pre-required subjobs to be started silenty before executing the ac-
tual requested action. Due to the dependency of the order of availability, these pre-startups
are executed within a thread in a hard-coded only, whereas several stack-startup-threads
could be performed in parallel.

8.4. STACKED FUNCTIONAL INTERWORKING 81

Therefore some basic knowledge of required functionality from the involved plugins - such
as required WoL for an initial boot of a PM - is also available to the generic dispatcher.
Anyhow, the actual tasks are performed by the involved plugins, the dispatcher just has
the knowledge about whom to call, and how to do that. The specific plugins required on
the various levels have to be provided by the context options on each level as the "-t" option.

When the pre-required intermediate stack-elements are already present and operable, the
stack-level is simply accepted as ENABLED and ignored for the further processing. A
required startup is monitored by a combination of timeout intervals with a counter for poll-
trials whether the required instance is already available. This is due to the lack of a common
call-back interface for the supervisor in order of advising it to trigger the start-up of a nested
inner instance within the actual guest-OS. Therefore the main dispatcher is the controller
instance, which is monitoring and controlling of the startup of the whole requested stack.

8.4.2 Startup

The startup of entries within a stack of VMs will open - once handeled completely - a variety
of advantages. One of the most obvious might be the implicit creation of all intermediate
sessions below the targeted stack entry, which includes consequently the PM itself if not yet
booted.

So the handling of complete stacks by just addressing a higher level entry could not just
open some smart advantages in a variety of scenarios, but also help to save energy by en-
abling machines on demand only, and therefore opening an easy to use facility for making
temporarily shutting them down less complicated.

Support for load distribution and therefore concentrating and tailoring appropriate loads
will become by stack-aware addressing an daily task for ordinary users too.

Even though this is seen as an important feature, the automatic and implicit start of stacks
is for now shifted to one of the next versions. This is due to several reasons, one is the
intermixed call interface of the provided VMs, another is the current priority of stabilizing
UnifiedSessionsManager first and bringing it to the audience "now".

Thus this versions supports the creation of VM stacks only manually step by step with
iterative calls, what might for now not be a real drawback, due to the average of 3-4 layers.
The support of handling of VMs within a stack is in this version already that much supported,
that is could be called smart anyhow.

8.4.3 Shutdown

When handling stacks of nested PMs and VMs , the CANCEL action on a base level will
force contained instances to terminate too. Thus a behaviour has to be defined, whether a
top-down soft shutdown has to be performed, or a "bottom-up" behaviour of instances, by
killing the assigned level without recognition of contained instances. This might be appro-
priate e.g. in emergency cases.

The handling of embedded instances with their own state might seem to be managed via
SUSPEND conveniently, but frequently leads to some RESUME problems due to invalidated
network sessions and related transient data.

82 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

Another issue is the mandatory remapping of commands when walking on the stack. One
obvious example is the REBOOT of the following PM containment stack, where each layer
might contain several native applications. Almost the same is true in principle, when dealing
with some higher level VMs intermediate layers.

Figure 8.10: Stack-View: W2K as HVM in DomU

When doing a REBOOT on the stack layer "sl-0" a simple forward propagation through the
stack in bottom-up direction might not lead to the result expected.

Thus a previous action for disabling the upper layer is required.

The appropriate action still have to be decided between one of the possible "persistently
disabling operations".

This could be a stateless or a statefull deactivation.

Even though the upper layers might be in physical and logical state without any reason
for termination, and just an unrelated reason on the lower layer might have triggered the
required REBOOT, once changed to the offline state, any session to networked peer might
lead to protocol timeouts of the involved applications. Thus even a simple SUSPEND,
e.g. in case of a Samba, LDAP, Kerberos, and Automount based SSO with an open W2K
session within a VM, will not restore completely and requires at least a new login of the user.

As a result some advanced strategies are required in order to end up in a state with previous
unrestricted operations mode after accomplishing the REBOOT.

The same will apply to almost any networked protocol with dynamic and non-persistent
sessions, where the applications peer is not prepared to continue after a "longer unexpected
disconnect". The whole involved communications protocol stack has to support the inter-
rupt of the service. This is particularly true, when a server application connected to multiple
clients is located on the local machine. E.g. DHCP, DNS/Bind, or a DB-Server.

The solution choosen for now is somewhat limited but a good base for extension and easy
to implement and to apply.

In current implementation the basic philosophy is not to use any persistent system services
for runtime-state-management, such as a splitted-reset for upper-layer instances, when re-
booting their container. This is targeted to be part of one of the future releases.

Two basic directions are defined:

FORCE Forces the selected instance to be canceled as selected, no previous shutdown of
contained instances will be performed. The instance itself may have some shutdown
behaviour, e.g. init-scripts, which will be performed unattended.

8.4. STACKED FUNCTIONAL INTERWORKING 83

STACK Uses a recursive approach for shutting down by an top-down behaviour. Therefore
the VM-stack will be first walked up form a call entry point of the bottom for the
"stack-tree" of upper VMs and embedded GuestOSs. Each instance "on the way" will
start an recursive upper call for all it’s contained instances and goes into a wait state
by a simple sleep call. Once the toplevel instances are reached, the downward roll-out
of the actual CANCEL operations starts. This happens for each branch seperately and
will be cumulated on the branch-bases to a node-state. Each node itself CANCELs
when all upper peers has reached the final state. Where the timeout hits before the
upper stack has reached it’s final state, the state for the remaining upper peers will be
forced by the node or simply ignored.

The propagation of a state is for the basic case of a simple termination of the whole stack
quite simple but requires for advanced state-change events some specific treatment. This
is e.g. the case for a reset of a VM containing additional VMs itself. Due to simplicity in
this version the "inner" VMs do not inherit the initial "outer" state, but are treated by a
mapped new state. This mapping is proceeded in accordance to the following table.

Mode Pre-defined above-modes
PAUSE PAUSE
SUSPEND SUSPEND
RESET POWEROFF
REBOOT POWEROFF
POWEROFF POWEROFF
INIT:0 POWEROFF
INIT:1 POWEROFF
INIT:2 ffs.
INIT:3 none
INIT:4 ffs.
INIT:5 none
INIT:6 POWEROFF

Table 8.2: Targets for state propagation of CANCEL action

8.4.4 State-Propagation Basics

State-Propagation

The depicted state-propagation within the previous chapters is beneath the addressing con-
cept the second essential facility required to operate VM-Stacks. This is particularly required
due to the inherent encapsulation of the stack-awareness of GuestOSs within each layer of
VMs. The willingly designed systems immanent encapsulation is not just for transparent
operations but also essential for security reasons. Anyhow, the operations of a VM stack
requires for practical reasons some stack awareness, which particulalrly uprises when running
services have to be located and relocated to various physical locations. These might particu-
larly depend on some constrins such as physical resources, or just specific configurations for
grouped-operations. The CANCEL actions frequently requires the overall controlled shut-
down of related groups of systems, which might be assembled to various execution groups
within several layer of VM-Stacks.

The stacked operations could be distinguished within a first step into the following basic
operations principles,

• Independent Operations

• Hard-Wired Dependent Operations

84 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

• Recursively Propagated Operations

The simplest form of stacked operation is the "Independent Operations", which could be
operated for independent atoms only. Examples for this are collecting actions like LIST and
SHOW, which are defined to be operated on pre-existing entities.

The some more challenging operations mode is the "Hard-Wired Operations" mode, which
is implemented as a specific SUBTASK named VMSTACK, refer to Section 13.3.4 ‘Stacks
as Vertical-Subgroups’ on page 123 . This mode supports a left-to-right dependant canonical
notation, and is due to it’s specific keyword aware of basic inter-stack dependancy. One basic
characteristic the VMSTACK is aware of is the consistency and physical nesting of the VM-
Stack it contains. Therefore the common <machine-address> and the <execution-target>
will be evaluated and checked for consistency due to founting a single VM-Stack. The cur-
rent version supports a single VM-Stack as a "column" within a tree, wildcards may follow
in future versions. The introduction of wildcards may be considered thoroughly due to it’s
permutation effects for the following above layers and the uprising redundancy of operated
virtual hosts. The VMSTACK supports for intermixed operations with actual hypervisor
calls and additional helper sessions like specific HOSTs sessions for openning CONSOLEs.
The very specific PM session with support of relayed-WoL with various configurations is com-
patible with a VMSTACK too, thus the complete activation process including the physical
host machine could be performed. A Typical application for the VMSTACK is the creation
of a VM-Stack.

The next mode of "Recursively Propagated Operations" is inherently stack-aware and used
for automatic propagation of a state within a stack. A typical application of this is the CAN-
CEL action, which naturally has to terminate the nested upper layers of a cancelled VM
too. Thus CANCEL propagated the STATE-CHANGE-REQUEST for CANCEL bottom-
up, and each branch itself, once the final leaf is reached, implements the STATE-CHANGE
by execution of the CANCEL action in top-down direction. Another variant of this is the
collection of information for the whole VM-Stack by one initial call. Typical for this might
be the recursively propagated LIST action, which lists any session within the whole set of
layer of a VM-Stack.

The current first approach is based on handlng of information related to VM-Stacks mainly
based on dynamic runtime-data to be collected and on request short-time cached. Addition-
ally static data is maintained within each VMs configuration in a decentralized manner, but
collected by automated tools for usage within multiple centralized cacheDBs, representing
various user specific customizable views. The following table shows the resulting stack-aware
methods for the various actions.

ACTION Method Propagation-Direction
CREATE VMSTACK synchronous bottom-up
CANCEL RECURSIVE asynchronous bottom-up

+ top-down
LIST RECURSIVE asynchronous bottom-up
ENUMERATE tbd. tbd.
SHOW tbd. tbd.
INFO tbd. tbd.

Table 8.3: State-Propagation for the first version

8.4. STACKED FUNCTIONAL INTERWORKING 85

The various methods support combinations of various operational application scopes result-
ing from the provided parameter sets as given by the basic call interface schema

ctys -t <action-type> -a <action>=<action-target> <execution-target>

The current <action-target> is provided as a single instance only, where some variants with
"ALL" exist(see CANCEL). For the <execution-target> single hosts and group instances
are supported, additionally context specific options could be provided.

ACTION Non-Stack Single-Peer Auto-Stack
Peer-Lists1

CREATE - x -
CANCEL x x x
LIST x - x
ENUMERATE x - -
SHOW x - -
INFO x - -

Table 8.4: Application of Propagation Scopes

The various application scopes result tightly from the implied specific addressing modes.
Some temporary restrictions apply to the current version due to the choosen simplified im-
plementation, but the basic concepts except the group-object for <machine-address> and
some wildcard features are provided by the current design. The address syntax is provided
as a canonical base set, which will be extended to additional views and mappings of address
syntaxes.

The current version easily supports several thousand VMs on a bunch of physical machines.
The supported performance in flat operations is more than sufficient, the implementation of
complex stack-aware features will be improved, but require due to immanent requirements
some more processing when designed purely dynamic. Anyhow, an additional LDAP based
version will follow, which might rely on some extended nameservices.

Integration into Nagios is foreseen for one of the next versions.

Stack-Capability Interconnection

The integration of several VMs of a heterogeneous set of hypervisors into a nested stack
requires some compatibility checks and pre-requires partially some specific resources to be
setup and available. Therefore within the the UnifiedSessionsManager the interconnection-
attributes

• STACKCAP
Offered stack capability

• STACKREQ
Required stack capability

are defined. These attributes are concatenated attributes consisting of various elemnts,
representing the environment as defined by the various session types. Each entry consists of
the same generic information, similar to the common standards of version information for
OpenSource:

1Lists are foreseen to be implemented, not yet available

86 CHAPTER 8. PMS AND VMS - THE STACKED-SESSIONS

<name>-<version>-<platform>

The participating plugins, managing a specific session type, implement each the connectors
for the upper and lower sessions plugin.

The stack capability is a mainly static information, which is inherent to the actually installed
software component. Some variations may occur, when e.g. various kernels for various
hypervisors are booted, thus varying the actualy stack-capability. The same may occur for
a hypervisor, when several versions may be started as required.

Virtual-Hardware-Capability Interconnection

In addition to the Stack-Capability the Hardware-Capability supports some static but mainly
dynamic parameters, which could be varied administratively and partially are influenced by
a single or even multiple VMs.

An obvious capability is for example in case of QEMU the emulated CPU and supported
motherboard/embedded-platform. Thus when starting an ARM-Version of debian, a QEMU-
VM may be required, which(as reqularly does) supports the ARM9-CPU and the required
eval-board. Additionaly criteria may occur, when the actual load and the basic CPU-
Frequency is taken into account, which may constrain the applicable machines.

The number of VMs running on a specific machine might be considered by the offered
hardware-capability and the hardware-requirements. The number of CPUs/Cores and the
actually present physical RAM are the first and obvious influencing parameter for this at-
tributes. Additionally the "/home" devices, if local and physical, will be recognized. The
usage of some metrics e.g. by a simple "dd-measurement" will be implemented as draft
balancing criteria too. These sub-attributes are stored in the same manner as the stack
parameters within the attributes

• HWCAP
Offered hardware capability

• HWREQ
Required hardware capability

The first version supports some basic checks only, more sophisticated evaluation and distri-
bution may follow.

Access Permissions

The stacked access and the resulting "Propagation Scopes" impliy some advanced manage-
ment of access permissions for several reasons. This is due too the two-step required acces,
the first to enumerate potential upper peers by means of the hypervisor, the second to actu-
ally access the the upper peers by their native GuestOS. Thus two points-of-authorization
has to grant access.

The scenario becomes somewhat complex, when it is taken into account, that in a stacked
operations each peer might have it’s specific user to be accessed, and additionally some
specifics are required for an inherent mandatory operational mode when starting nested
stacks. The most obvious case might occur, when native user-permissions only are choosen
for Xen access, which requires root-permissions for starting a DomU. Of course, sudo and/or
ksu has to be actually used here(and is checked by ctys). Anyhow, some login account vari-
ations might and do occur within a single "column of a stack". Another requirement is the

8.4. STACKED FUNCTIONAL INTERWORKING 87

neccessary polling of Native-Accessibility of the GuestOS, which is naturally not operated
synchronously. Therefore the two functions "waitForPing" and "waitForSSHPing" are de-
fined, where the latter requires native access by granted permissions.

The recommended usage is the application of NFS and SSO, when no security critical data
has to be provided over the network. For advanced security requirements AFS or at least a
newer version of NFS should be used. Alternatively parts of the filesystem could be defined
by User-Space-Filesystems based on SSH for example.

The most advanced common Inter-Layer-Authorization could be implemented by the com-
bination of Kerberos, OpenSSH, LDAP, NFS, and Automount. Variations with local and
alternative networked filesytems, and without LDAP could be applied.

The general advantage of an SSO based access with a central filesystem is the simplicity
of loadbalancing, when decisions for the <execution-target> and/or resource requirements
related to the <action-target> has to be made. Particularly efforts for the physical reloca-
tion of a VM could be avoided, du it’s system based distribution by the networked filesystem.

The ACTIONs supporting "Peer" mode and "Auto-Stack" mode provide an optional
parameter to define individual users and credentials for an appropriate acces by usage of
alternative accounts on the specific <action-target>. The access to the <execution-target>
is performed as usual.

It is recommended to define a common set of users for access to generic purposes such as
LIST, which could be commonly used. Additionally a specific case might occur, when a
virtual bridge has to be created on the fly by networked access (Section ?? ‘??’ on page ??
), where during a required short-offline period some acces to stored executables is required.
These ACTIONS should be performed by local-only users.

A second aspect is the authorization, where a local-only facility such as sudo should be used
in that case, alternatively a cached approach could be utilized.

Verified examples for the application of VMSTACKs are available in Section ?? ‘??’ on
page ?? .

Chapter 9

CTYS-Nameservices

9.1 Basics

The operations of the UnifiedSessionsManager supports a set of tools for nameservices for
handling of combined inventory data for physical and virtual machines. The information
of virtual machines contains particularly information about offline machines such as in-
stalled OS and IP addresses. Additionally the containment information for network based
installations is registered in a cache database, where a single VM could be accessed on mul-
tiple execution nodes via NFS. The location and relocation capability information is cached
within an inventory database and could be utilized by the ctys framework. Severeal views
are supported by usage of the common option "-p <database>" representing a specific node-
collection. The inventory data is collected and stored for distributed network hosts by the
tools

• ctys-vdbgen

• ctys-extractARPlst

• ctys-extractMAClst

without any required user interaction. The store and export format is a ASC-II based record
format compatible to OpenOffice and MS-Excel(TM), and any Database. It suits well up to
several thousands entries with query-access times in the range of 0.6-0.8 seconds on medium
sized machines.

REMARK:
The caching of nameservice data ("-c") data is not related to the caching of payload
data for distributed operations ("-C") .

The tools are internally based on the ENUMERATE action of ctys and have the knowledge
of the configuration information formats like conf-files of the implemented plugins.

The whole set of tools related to the nameservices of the UnifiedSessionsManager comprise:

• ctys-dnsutil

• ctys-extractARPlst

• ctys-extractMAClst

• ctys-groups

• ctys-genmconf

89

90 CHAPTER 9. CTYS-NAMESERVICES

• ctys-macmap

• ctys-smbutil

• ctys-vdbgen

• ctys

9.2 Runtime Components

The components of the nameservice are structured as depicted within Figure:9.1 on page:87
based on the ENUMERATE and LIST action.

The ENUMERATE action is utilized for interactive user queries and by internal queries for
handling and caching of configuration data of VMs and PMs. Therefore the filesystems of
enumerated targets are scanned by the call ctys-vdbgen for stored VMs. For detected VMs
parts of the configuration data is correlated with network data extracted from the DHCP
and DNS services and stored within a caching database.

The ctys itself utilizes ctys-vhost as first trial for data queries from local cache, when no
cached data is available the target machine is scanned for VM configuration data. The
optional collection of the distributed runtime information into the inventory database with
the runtime tools by themself simplifies the runtime data management by the user and the
internal data structures to be implemented significantly.

The data management actions ENUMERATE and LIST provide the keyword MACHINE
for output of a raw data format, and the keywords TITLE and TITLEIDX for display of
the actual names and canonical indexes of each field. When using the ctys actions as ENU-
MERATE, the produced output is literally ready to be used within the ctys-nameservice
file-database.

The cache database is organised as a file database where each entity is stored within one line
constituting a complete record from a ctys-call.

9.2. RUNTIME COMPONENTS 91

Figure 9.1: Nameservice components

92 CHAPTER 9. CTYS-NAMESERVICES

Another tool called ctys-extractMAClst generates a mapping database "macmap.fdb" from
a dhcpd.conf file with three column information, mapping host names, TCP/IP-addresses
and MAC-addresses. Alternatively the tool ctys-extractARPlst could be used for the same
issue, but with dynamic polling.

These both databases will be utilized by the runtime tools in order to generate complete
network mapping information when required. The individual mapping data is stored within
a configuration database in the home directory of each user, which is $HOME/.ctys/db.

9.2.1 Distributed Nameservice - CacheDB

As mentioned the current version stores it’s data in file databases, with one record each line.
The fields are seperated by semicolons, so these files could be viewed and inspected with
almost any spreadsheet-tool.

Performance is for small and medium networks quite good, where medium might be up to
some thousand entities.

The remote data will be fetched and collected by "ctys -a ENUMERATE..." calls, what
could be somewhat time consuming, but is cached locally within one call, and could be done
persistently too when set.

The build of the local cache on each node is performed by three major steps.

1. ctys-extractMAClst or ctys-extractARPlst
Sets up a MAC-IP mapping database.

2. ctys-vdbgen
Collects configuration data from a given list of hosts/accounts.

3. ctys-vhost
Pre-Converts data from a first-level cached data-format into a runtime format, where
almost only some IP conversion and pre-combination of groups with each members data
is performed.

The components are as given in Figure 9.2. The data could be cached in local databases on

Figure 9.2: Cache Generation

9.2. RUNTIME COMPONENTS 93

multiple nodes. It will be decided at runtime, which cache should be used.

The default behaviour is to try the local cache on the caller’s site first, when no cache-hit
results, the remote site’s cache is tried next. If again no chache-hit occurs or no cache is
available, than in case of a "configuration based" plugin the remote file system is scanned
for the appropriate configuration data. If a config-file is found, the related VM is started.

The default behaviour "-c BOTH" could be altered to "-c LOCAL" or "-c REMOTE". The
final scan of the filesystem could be suppressed by the "ONLY" suboption.

Figure 9.3: Distributed Caches

For pure dynamic plugins such as CLI, X11, and VNC no cache will be used, thus no
filesystem scan is required too.

94 CHAPTER 9. CTYS-NAMESERVICES

9.2.2 Network LDAP-Access

Even though the performance of the tools seem to be perfectly allright, the centralized
management and distribution of network information data would be preferred. Therefore
one of the next versions is foreseen to rely on a LDAP implementation.

9.2.3 Application Range and Limits

The nameservice utilities manage and provide mapping of ctys-names for VM-Addressing to
TCP/IP addresses.

The following restrictions should be recognized.

• The ctys toolset handles by TCP/IP or better by OpenSSH interconnected entities.
Thus HostOnly networks are not supported.

• The VMs like Xen and VMware rely as one of their most important identifier on the
MAC-Id, particularly when DHCP is used in highly dynamic networks, where the VMs
could be seen as roaming "virtual-devices".

• ctys does handle DHCP based mapping, but does not support address-pools. So static
administered MAC-addresses could be used for selection by ctys tools only. Anyhow, as
long as this is not required, ctys perfectly cooperates with dynamically assign TCP/IP-
addresses.

9.3 Required Namebinding

A session is defined and accessed by it’s name binding. This is actually different for almost
each integrated type of sessions a.k.a. plugins within their native namespaces. Therefore the
following unifying name binding has been defined, which still supports the several specific
namings as an additional facility, to be used for some required specific use-cases and/or call
of specific tools.

The ctys modules which are implementing the namebinding particularly supports conversion
between the several naming attributes, thus a common interworking could be setup.

In addition a common nameservice is defined, which offers a binding and cross-resolution be-
tween the different plugins. Distribution and transparent caching, including security aspects
is included.

9.3.1 Integration of PMs, VMs, and HOSTs

The integration of the supported categories PM, VM, and HOST is the essential advantage
of the implemented namebinding. Therefore a superset is defined as protocol entity and
implemented within the several plugins. Basic functions with plugin specific call interfaces
are supported as a common library.

9.4 Group-Targets

ctys supports the usage of groups, which are actually file names containing a list of hosts to
be handeled together. This list could be any user defined assembly of single-targets by any
criteria, to be executed together as a group.

9.5. ADDRESSING NESTED STACKS 95

Technically the group name within the CLI is simply replaced by the set of host names from
the group file. Additionaly context options for each group are permutated for the resulting
set of hosts from the group.

Due to the previous expansion of given groups, the group name will hide any actual target
with that name from the CLI, whereas this name could be reused within a group file. Groups
are could be nested by "#include" statement, multiple groups could be listed, seperated by
commas. Hosts could be written either one by line, or as multiple comma seperated entries on
one line. The group statement could be present more than once for each include-statement:

#include <group>[,group[,...]]

The ’#’ has to be the first character of the line followed immediately by the literal keyword
’include’.

Group files are stored and searched by default within the directory "$HOME/.ctys/groups"
and "$MYCONFPATH/groups", but multiple search paths could be provided by the envi-
ronment variable. The syntax is analogous to PATH-syntax.

CTYS_GROUPS_PATH=<absolute-path>[:<....>[:<...]]

The first match will be used. The file itself could be padded with comments and empty lines,
which are ignored when evaluating it. The default paths are prepended to the
CTYS_GROUPS_PATH during init of ctys.

Goups could be written as a relative pathname to one of the CTYS_GROUPS_PATH
entries, allowing the definition of categories of groups.

ctys -a list user@desktops/myOfficeSet root@admin/cluster01/basicView

For additional information on name resolution for groups refer to "GroupResolution" .

9.5 Addressing Nested Stacks

The operations of the UnifiedSessionsManager utilize nested VMs as stacks of VMs. This
includes the implizit start of containing VMs as a runtime base for upper VMs. Thus the
startup of an entity within a stack requires some sophisticated information of the pre-required
stack structure to be utilized.

The following figure depicts the various configuration entries for an example with 3 Stack-
Layers.

96 CHAPTER 9. CTYS-NAMESERVICES

Figure 9.4: Stack-Controller Data

The first layer SL-0 is defined as the lowest layer of the VM-Stack, representing the founding
physical machine PM. The remaining Stack-Layers SL-1, SL2, and SL-3 are nested within a
VM-Stack, where each requires a two-folded view for nested and recursive operations. The
hypevisor interface for the containig system, the virtual machine attributes for encapsu-
lated guest system. The operation of automatic startup of complete multi-level VM-Stacks
requires some specific checks for basic consistency, e.g. the compatibility of the processor
architecture. Therefore some extended offline nameservice information is required.

A common scenario might be the case, where one instance is already running, probably an
intermediate instance of the newly requested VMSTACK session. The requested stack thus
could not be created straight forward, even though no additional constraint may exist.

The following figure expands the previous example of Figure: 9.4 with the actual state de-
pendant visibility of the required static configuration data.

Figure 9.5: Stack-Controller Data Visibility

Therefore the UnifiedSessionsManager implements various nameservice measures in order

9.5. ADDRESSING NESTED STACKS 97

to implement the required features.

• ctys-dnsutil

• ctys-extractARPlst

• ctys-extractMAClst

• ctys-genmconf

• ctys-macmap

• ctys-smbutil

• ctys-vdbgen

• ctys

Part II

Software Design

99

Chapter 10

Software Architecture

10.1 Hypervisor Sessions Model

The access model to hypervisors within ctys is modelled in a Client-Server fashion. The idea
is the representation of a generic service model with a single interface to all service access
points.

Figure 10.1: Hypervisor Sessions Model

The basic concept herby is the introduction of an abstract service layer in a plugins-bus
manner, where each of the various systems is represented by a single unified syntax. Thus
all hypervisors are modeled by their expected actual core functionality Hypervisor or Emu-
lator, representing a virtual environment for physical devices. The main application criterias
of the virtual hardware for the user herby are the represented CPU-Architectures and the
ability to utilize specific accelerators for performance enhancements. These two aspects are
particularly represented as attributes for selection and management of access to services by
the user.

The given definiton of an abstract service model as depicted within Figure:10.1 founds not
just the base for modelling a common acces interface, but the base for facilities to use
complete virtual machines as a "simple" virtual software component in virtualized software
systems.

The represented basic "Hypervisor Sessions Model" founds the concepts for architectures,
where the classical multilayer software design concepts could be seamless virtualized and
combined to a set of virtual machines running theirself within one virtual machine - a nested
stack of VMs. This completely encapsulates the groups of virtual services within the base

101

102 CHAPTER 10. SOFTWARE ARCHITECTURE

VM as single service access point controlled and presented by standard network access facil-
ities.

Thus the sessions model not only founds the modularization of virtual components, but
represents a service architecture which could be customized and maintained in a non-stop
manner by widely available standard TCP/IP-facilities.

10.2 Basic Modular Design

The architecture and design of the UnifiedSessionsManager is targeted to be capable for
seamless integration of additional tools. Therefore a plugin systems with dynamic and fully
automatic load and operational state evaluation is designed and implemented.

Figure 10.2: ctys Software Layers

The implementation of the plugin model by exchangeable components is similar to "Shared
Objects" or "Shared Libraries" and based on the "source" function of bash. The detection
and integration is based on dynamic scan of subdirectories in combination with a load mech-
anism and operational state management. The usage of the bash has some limitations, but
offers simplicity and common applicability for the first version.

The execution of ctys is splitted into a client and a server component, where both compo-
nents are identical, but perform different functions in their specific execution context.

Figure 10.3: ctys distributed components

The distributed components rely on the basic structure of a common framework with generic

10.3. COMMUNICATIONS MODEL 103

services such as name services, task and sessions management, and distributed data services
for inventory management. The main feature of the generic approach is the common dis-
tributed applicability of framework functions as well as framework executables from the
standard user interface.

The provided interfaces for runtime-integration supports in-process-interfaces for plugins and
inter-process interfaces for framework tools and wrapper calls.

Figure 10.4: ctys distributed components

Thus an integrated custom application is capable for distributed operations by default, where
a basic version management for distributed compatibility issues is integrated.

10.3 Communications Model

The communications between entities within the UnifiedSessionsManager is modeled around
the basic idea of transparent access to user desktops for local and remote logins with ex-
tensions for pure command line sessions. This results in IO-stream based communications,
which is limited but quite simple to implement.

The consequence of this approach is a resulting 2-type category of communications. The
first is the forwarding of the display to the user for remote actions, either complete remote
desktops or simple remote shells as the managing entity for user sessions. The second is the
local execution of the user interface for the management of current session, where the local
sessions client opens communications to remote services.

The resulting architecture is a layered architecture modeled as an independent communica-
tions service layer and a sessions management layer which is basicly peer-to-peer oriented
only. Thus the communications is handeled on high level abstraction with an addressing
abstraction called <machine-address>. The remaining knowledge of communications type
for the sessions layer are the two types as basic pattern

DISPLAYFORWARDING

104 CHAPTER 10. SOFTWARE ARCHITECTURE

The whole application load including the access facilities such as the user desktop
application is located on the server site. Local resources are required for basic screen
display only. This mode suits particularly for thin clients.

CONNECTIONFORWARDING
The application server is located on the server, whereas the client services are based
on the local machine. This includes the access such as a desktop application as well as
specific client processing services of the application. This mode suits particularly for
applications with increased autonomous client side processing with less communications
requirements to server based services. In case of distributed clients with local data
caches this might be the best approach.

10.4 Security Model

The main aspect for the UnifiedSessionsManager as a sessions management application is
the protection of the inter node communications. Therefore the approach is similar to the
basic idea of Kerberos, where for local security on the communications peers some additional
measurements of the platform facilities are required.

By default a basic user based access and view model for local access is implemented, which
relies on the access permissions of the local user account.

The communications supported are based on encryption only, in current version on OpenSSH.
Therefore the authentication and authorisation could be varied by the means of Single-Sign-
On provided by TLS/GSSAPI.

Chapter 11

Runtime Interfaces

11.1 Target-Platforms

The support for multiple platforms requiers specific dynamic adaptions for each, which are
based within the ctys framework mainly on the variables MYOS and MYDIST. These con-
tain configuration entries, path dependencies, platform specific option sets of system utilities
and in some cases specific functionality for adapted processing.

The convention is based on in-source control flow as well as specific modules, where the
naming convention e.g. "qemu-$MYOS.conf" is applied. One example for this is the distinc-
tion between Solaris and OpenSolaris, here both share the same MYOS, but distinguish in
MYDIST. And bot together require common specific, but additionally distinguish theirselfs
by some minor differences. The same for the MYOS=Linux, where MYDIST widely varies
e.g. to CentOS, debian, SUSE, Ubuntu, etc. In some cases additional aspects such as the
CPU architecture are required to be applied.

A set of common generic components is included but may fail partly due to minor differences
when not adapted. The most of current distributions are supported by appropriate adaptions.

11.2 Communications Modes

The communications within the UnifiedSessionsManager between physical nodes is supported
by OpenSSH only. Thus encrypted connections are supported only. This is established
either by the X-forwarding mode, or the explicit setup of a port-forwarding channel. The
two main cases to be distinguished are DISPLAYFORWARDING and CONNECTIONFOR-
WARDING. The following cases are the main application area of this tool, which focuses on
massively distributed environments.

DISPLAYFORWARDING
This is the default mode for usage of architectures in a single user environment often
within a standalone or file server level networked single user machine. It suits also good
to servers with thin clients, where the display features do not need to be of enhanced
images functionality. Almost the whole required resources are offloaded to the server
here.

The whole display will be forwarded to the clients machine by an underlying systems
protocol, in this case the X11 protocol with display redirection is used. This is also
applied, when a complete virtual desktop based on VNC and/or a virtual machine is
started on the server. For security reasons and smart application only the OpenSSH
package is supported.

105

106 CHAPTER 11. RUNTIME INTERFACES

CONNECTIONFORWARDING
In this case the most of the images processing will be done native on the client site.
Which utilizes on one hand protocols like X11 protocol of local application specific
clients and in addition uses XClients to utilize the local XServer. With tools like VNC
based on FBP the client will be executed in locally and redirected by port-forwarding
via an encrypted SSH tunnel to the remote server.

The DISPLAYFORWARDING is compared to CONNECTIONFORWARDING the simpler
case when using SSH. When using CONNECTIONFORWARDING the things become some
more complicated. The decision here was made to using port forwarding only, but not in
reverse direction in order to avoid a listening mode on clients side.

Due to some limits of actual implementations a channel-bundling is not supported by
OpenSSH for X-forwarding when used with the "-L" option for an explicit forwarding tun-
nel. Particularly VNC binds each of it’s DISPLAYs for each call to another listening port.
Clients front-ends like VMware-Workstation works fine, but are used to unification in a com-
mon manner. So for this mode for each session a new SSH tunnel will be created dynamically
in so called one-shot mode.

11.3 Control and Data Flow

The basic design concepts for the current implementation of ctys comprise context based
relocateable services, the single-type-of-access services for local and network based access
with the combination of facilities for a distributed controller for task data and execution.
Additionnally the design for the feature set is expanded into a concurrent execution set based
on nested execution sets.

11.3.1 Distributed Controller

The design of the serverless execution as a relocatable distributed controller suits partic-
ularly for the current implementation where the whole design is mainly based on volatile
dynamic runtime data only. The caching of distributed data into an inventory database is
provided a an optional feature for performance enhancement and enhanced features. Thus
each networked function requires frequently the synchrounous and asynchronous propaga-
tion of services to one or more remote locations and the final postprocessing of the combined
results.

The design of this functionality reuiqres not only aspects of job control and sessionsman-
agement, but the decision of splitting service execution and the distribution of task loads
too. This particularly requires some effort for the design of the application of user defined
options within one chain of a distributed workflow.

Therefore some types of local, remote, and mixed applicable options with a base facility for
locating and forwarding diverse subsets of call options is designed within the Distributed
Contoller.

11.3. CONTROL AND DATA FLOW 107

Figure 11.1: ctys Local Control Flow

11.3.2 Task Data

The task data as defined here contains multiple aspects as defined by ctys. The main aspect
is the handling of multiple execution targets including - later - tree-style distribution of sub-
tasks either parallel, sychrounous, asynchronous and with specific option sets in completely
mixed and heterogeneous excution set. The distribution of jobs and reuiqred handling of
specific option sets is particularly supported by the GROUP and MACRO features of ctys.

The integrated management of multi-screen and multi-workspace desktop environments re-
quires some tainting of the pure task based job and session control. This is due to practical
aspects of pop-up windos on several layers of so called workspaces, where the so called "z-
axis" for the GUI allows only the topmost to be visible to the user. Thus some reordering
of tasks with visual representation elements on the desktop has to be performed. This re-
striction applies to ctys due to it’s serverless, thus basically stateless operations.

Additionally the requirements for execution-options-allocation for distributed tasks apply.

108 CHAPTER 11. RUNTIME INTERFACES

Figure 11.2: Task Data handled by the main dispatcher

The Figure: 11.2 depicts some basic facilities for implementing the handling of execution
attributes - here command line options.

11.3.3 Stack Interworking

The combination of complete virtual machines into nested stacks requires particularly some
effort related to handling the runtime states and their propagation within encapsulated sub-
machines. Thereofre the concept of integrated Stack-Interworking is implemented which
comprises then physical machine - PM - as well as the whole heteregeneous nested stack of
virtual machines - VMs - executed on the PM.

The main basic aspects are the automation of startup and shutdown of intermediate stack
entities, where multiple contained services could be affected. Thus mechanisms for implicit
bottom-up startup of stack-prerequirements as well as top-down shutdown of dependent
superservices is designed and implemented. The basic idea is here the propagation of runtime
states initiating appropriate actions within each entity of the propagation-chain.

Create Propagation - CREATE

To be documented.

Upward Propagation - CANCEL

Upward propagation is utilized for a controlled CANCEL of a stack with multiple levels of
nested VMs. The demonstration in current version is implemented with VMware and XEN
as bottom VMs running in a PM. The upper levels are implemented with QEMU as a CPU
emulator without it’s kernel module. Thus a nesting is supported without specific kernel
involvement. The first release of stacks is tested on Linux bases only, even though any UNIX
based platform might work.

The upward propagation during a CANCEL action performed on the sl-x (stack level-x)
requires a successive upward walk through any contained stack and initiation of the appro-
priate resulting actions beginning on the topmost VMs. Thus the algorithm first detects
it’s upper tree and dispatches CANCEL request to each involved instance. Once the whole
tree is resolved, the top-level VMs begin independently to CANCEL their hosting instances.

11.3. CONTROL AND DATA FLOW 109

When all upper peers of a VM are CANCELed, than the intsance itself performs a CANCEL.

In case of a pure termination things are somewhat easy to implement, but e.g. in case of a
RESET the only actually resetted instance is the first called instance. Due to simplicity in
this version no implicit reset of upper parts of a stack is supported.

The involved components are depicted in the following figure.

Figure 11.3: Nested Upward-Stackpropagation

The implemented control mechanisms are designed as a recursive three-stage algorithm.

1. native propagation
If FORCE is not set, than the stackPropagate function is called first. This function
implements a recursive walk-upward call propagation of ctys with CANCEL action.
The success and finalization of the called method is here monitored by a timeout value
only. This again is designed due to simplicity and avoids sophisticated persistent state-
control measures and implementation of controller deamon services. Also some specific
advanced cases of handling states of upper parts are avoided.

The native propagation itself executes as a final approach a hypervisor call, when an
instance within the stack is not accessible. This is required due to the pure "implied

110 CHAPTER 11. RUNTIME INTERFACES

state-control" within the recursion through the stack. Thus any intermediate level in-
stance without native access would be handeled by it’s own hypervisor, instead of the
containing. Within a proper setup of tightly integrated stack instances this case might
only occur as an erroneous exception.

In distinction the the hypervisor propagation immediately accesses the hypervisor and
just relies of it’s and it’s nested inherent hypervisors proper capabilites. Thus this final
call is not an actualy redundancy.

2. hypevisor propagation
When the native propagation is finished the remaining instances are handeled by direct
interworking with the hypervisor. This has advantages and drawbacks.

One dominant drawback is the required awareness of the hypervisor of it’s contained
GuestOS, and the support of adequate interworking tools for handling a simulated har-
ware reset and switch-off combined with a proper shutdown. If lacking the situation is
almost the same as abrubtly switchin off any physical UNIX machine without a previous
shutdown, thus e.g. a missing sync.

The advantage is the uncomplicated implementation of a GuestOS independent inter-
face for CANCEL. This is used e.g. for MS-Windows running in a VMware hypervisor
with installed VMwareTools.

The only available control by a predefined TIMEOUT requires a suboptimal setting
of it’s value in accordance to the worst-case. Any partial shutdown will be forced to
finalize immediately, when after the first trial due to reaching configured timeout a
second step with immediate takeover of control by the hypervisor is entered.

3. self
The SELF call is the final CANCEL of the host containing the initial call, which could
be an instance at any level of a VM.

Downward Propagation

To be documented.

11.4 Plugins Integration

11.4.1 Basics on "bash"

The benefit of the bash is it’s applicability due to commonly available knowledge of the
targeted users. The usability of ctys including the framework functions within shell scripts,
offers a distributed processing facilities including the management of remote data and pro-
cessing. This particularly may compensate the lack of support for complex data structures
and within the bash.

The most important feature used within the UnifiedSessionsManager is the "source" of com-
ponents. This is developed within ctys tools to be used as a similar approach to shared
libraries of the binaries execution environment. Therefore almost all scripts of the ctys tools
are just plugged together by using a load mechanism based on "hook" convention.

11.4. PLUGINS INTEGRATION 111

11.4.2 Component Framework

The framework offers particularly a complete set of functions for distributed execution of
embedded functions and command line based executables. The embedded functions as load-
able bash-plugins could be particularly wrapper for almost any type of subcalls including
starters for graphical interfaces.

The most important interface is the concept and implementation of the dynamic and generic
access mechanism for loadable plugins. This is based on some minor naming convention and
a basic set of interfaces including an init-level based set of initialization calls and propagation
of these states to subcalls.

Static Load of Modules

ffs.

Dynamic OnDemand Load of Modules

ffs.

Operational States

The main idea behind the introduction of operational states is the reduction or better elim-
ination of static runtime dependencies by introduction of dynamic adaptable feature sets.
This is exactly implemented within ctys.

Therefore the initial startup processing scans for actual available feature sets and decides
whether to continue or not. This detection and decision process is splitted into multiple
scopes and levels by multiple internal so called distributed state machines. Each compo-
nent decides within it’s current runtime context whether a specific feature is available, and
thus the requested service could be offered. The validation tool "ctys-plugins" itself is the
best example. The scope of operations could be controller by selecting the actually loaded
components as well as defining a runtime context by the "-E" option. This option defines
whether the runtime context is "client" or "server", thus requests server or client services
either as mandatory or as optional. This generic distributed approach eliminates the issues
related to SW-Installation and distribution of specific versions.

The available plugins are utilized and managed by usage of their integral state variables.
Particularly the operational state defines the accessibility of the features provided by indi-
vidual plugins in the current runtime-context. This allows the self-propagated-installation
of ctys by "ctys-distribute" with less prerequisites.

The usage of sets of plugins could be triggered by explicitly called CLI options "-t" for specific
targets, or by the pre-load option "-T". In case of generic actions like LIST, ENUMERATE,
SHOW, and INFO, ctys will parse all loaded and available plugins for representation of
statistical or bulk results. This will lead frequently to errors, when some prerequisites of
individual plugins are not met for any reason.

The state variable for a plugin is dynamically determined based on the array of names for
runtime detected and loaded plugins. Therefore in the entry-hook of each plugin a variable
with the following naming conventions has to be defined:

<plugin>_STATE

112 CHAPTER 11. RUNTIME INTERFACES

where <plugin> is the name of current plugin in UPPERCASE, same as the containing
directory name. E.g.

XEN_STATE, VMW_STATE, QEMU_STATE, or VNC_STATE

The variable can be assigned one of the following states similar to the ITU-T definitions for
telecoms:

AVAILABLE(0)
This is the implicit state of any found module, which is actually not handled, but just
present. Any present plugin is registered in a list of available plugins, which represents
it’s presence. The default state is set to DISABLED, the first "level" of managed states.

DISABLED(1)
The default state stored in the runtime modules.

ENABLED(2)
This state is set, when during initialization of the module sufficient prerequisites are
met. Else the state remains DISABLED(1).

IDLE(3)
This state is currently not be utilized.

BUSY(4)
This state will be managed just for statistical reasons when for ctys the "-v" option
is choosen. This option displays after completion of execution the last state of ctys
just before termination. Therefore it shows the actual state of the completed call, thus
marks the actually used modules as BUSY.

REMARK: This feature is not yet finally implemented.

IGNORE-Flag

A special flag similar to DISABLED is available, which influences the loader and prevents
the load of the plugin at all. So the IGNORED state is actually the "unavailable" state,
avoiding execution failure e.g. during initialization on an unsupported platform. Refer to
the configuration file "ctys.conf", a detailed example is provided within Section ?? ‘??’ on
page ?? .

export <plugin-type>_IGNORE=1

Multi-OS Boot Environments

The usage of multi boot environments opens numerous issues to it’s management. One is the
installation of appropriate software components and avoiding the of usage of parts, which
might fail. Another might be the ongoing synchronization of updates for the system and the
available plugins. Therefore the decision for ctys was the introduction of the state variables.
The state of each plugin will be determined dynamically, so all available plugins could be
installed at once. Even though e.g. the Xen plugin might not necessarily be usable on a
configured kernel for VMware.

11.4.3 Dispatcher

ffs.

11.4. PLUGINS INTEGRATION 113

11.4.4 Common Data Structures

The interface data depicted within this chapter could be displayed by various formats. The
following formats are supported:

1. REC
A propriatary record format:

record(#rec-idx):={
{#field-idx, attr-name, attr-val},
{.....

}

2. SPEC
A meta-data record format for testing of data with easy readabilty:

record(#rec-idx):={
#field-idx attr-name: attr-val
#field-idx attr-name: attr-val
#field-idx attr-name: attr-val
.....

}

3. TAB
A table format:

|attr-name | attr-name | attr-name |
+------------+-------------+-------------+
|attr-val | attr-val | attr-val |
|attr-val | attr-val | attr-val |
...

4. XML
An export format for post-processing:

<record index=#rec-idx>
<attr-name index=#field-idx>attr-val</attr-name>
<attr-name index=#field-idx>attr-val</attr-name>
.....

</record>

ENUMERATE

The following table lists the internal ENUMERATE input format from called plugins. This
format is supported from each plugin by mediation of it’s data from the specific data sources
to a common internal canonical interface. One record is present for each interface of the
VM, which is frequently more than one.

This dataformat is the common format not only for the internal subdispatcher, but also
lterally for storage within the cacheDB and for internal data exechange, e.g. for pre-checks
and validation of the CREATE action.

The data record is transfomed and presented in various formats and sub-sets as requested
by the user. The final output is managed by the generic intermediate subdispatcher for
ENUMERATE action.

114 CHAPTER 11. RUNTIME INTERFACES

Nr. Field Description Common Remap
1 ContainingMachine Machine hosting a VM. X 1
2 Label User defined unique label. X 3
3 ID The path of the configuration file. X 4
4 UUID The UUID. X 5
5 MAC MAC address. X 6
6 DISPLAY Optional DISPLAY. 8
7 ClientAccessPort Optional client access port. 9
8 ServerAccessPort Optional server access port. 10
9 VNCbaseportVNCPORT VNC base access port. 11
10 TCP TCP/IP-Address. X 7
11 SessionType Type of session, a.k.a. plugin. X 2
12 Guest-Dist The distribution installed as guest. 12
13 Guest-Distrel The release of the distribution. 13
14 Guest-OS The guest OS. 14
15 Guest-OS-Rel The release of the guest OS. 15
16 VersNo The version of the VM config. 16
17 VM-SerialNo An arbitrary serial number for VM. 17
18 Category The category of the configuration. 18
19 VMSTATE Configured state of VM. 19
20 HYPERREL Release of the install hypervisor. 20
21 STACKCAP The list of offered capabilites 21
22 STACKREQ The list of capabilites required. 22
23 HWCAP The offered capabilities. 23
24 HWREQ The list of required capabilities. 24
25 EXECLOCATION List of hostnames. 25
26 RELOCCAP Relocation capabilities. 26
27 SSHPORT Alternative port for SSH. 27
28 NETNAME Network name of current interface. 28
29 HYPERRELRUN Release of actual locally available hypervisor. 29
30 ACCELERATOR Accelleration component. 30
31 EXEPATH The FQDN of the executable. 31
32 RESERVED For internal use. 32
33 IFNAME The interface within the GuestOS. 33
34 CTYSRELEASE The MAGIC-release-ID of ctys. 34
35 NETMASK The netmask of current segment. 35
36 GATEWAY The routing gateway. 36
37 RELAY Local-Peer-Interconnection device. 37
38 ARCH Virtual architecture. 38
39 PLATFORM Virtual device. 39
40 VRAM The assigned amount of RAM. 40
41 VCPU The assigned number of V-CPUs. 41
42 CONTEXTSTRG A private storage for the plugin 42
43 USERSTRING A custom string from the user. 43
44 UID The user ID of current account. 44
45 GID The group ID of current account. 45
46 defaultHOSTs The default type of native login. 46
47 defaultCONSOLE The default type of console for hypervisor. 47

Table 11.1: ENUMERATE-Input-Format from Plugins

11.4. PLUGINS INTEGRATION 115

Nr. Field Description Common Remap
1 ContainingMachine Machine hosting a VM. X 1
2 SessionType Type of session, a.k.a. plugin. X 11
3 Label User defined unique label. X 2
4 ID The configuration filepath. X 3
5 UUID The UUID. X 4
6 MAC MAC address. X 5
7 TCP TCP/IP-Address. X 10
8 DISPLAY Optional DISPLAY. 6
9 ClientAccessPort Optional client access port. 7
10 ServerAccessPort Optional server access port. 8
11 VNCbaseport VNC baseport. 9
12 Guest-Dist The guest distribution. 12
13 Guest-Distrel The release of the distribution. 13
14 Guest-OS The guest OS. 14
15 Guest-OS-Rel The release of the guestOS. 15
16 VersNo The version of the VM config. 18
17 VM-SerialNo An arbitrary serial number. 17
18 Category The category of the configuration. 18
19 VMSTATE Configured state of VM. 19
20 HYPERREL Release of install hypervisor. 20
21 STACKCAP The offered capabilites 21
22 STACKREQ The required capabilites. 22
23 HWCAP The offered HW capabilities. 23
24 HWREQ The required HW capabilities. 24
25 EXECLOCATION Valid exec locations. 25
26 RELOCCAP Relocation capabilities. 26
27 SSHPORT Alternative port for SSH. 27
28 NETNAME Network name of current interface. 28
29 HYPERRELRUN Release of actual locally available hypervisor. 29
30 ACCELERATOR Accelleration component. 30
31 EXEPATH The FQDN of the executable. 31
32 RESERVED For internal use. 32
33 IFNAME The name of the interface. 33
34 CTYSRELEASE The MAGIC-release-ID of ctys. 34
35 NETMASK The netmask of current segment. 35
36 GATEWAY The routing gateway. 36
37 RELAY Local-Peer device. 37
38 ARCH Virtual architecture. 38
39 PLATFORM Virtual device. 39
40 VRAM The amount of RAM. 40
41 VCPU The number of V-CPUs. 41
42 CONTEXTSTRG A private storage for the plugins. 42
43 USERSTRING A custom string for the user. 43
44 UID The user ID of current account. 44
45 GID The group ID of current account. 45
46 defaultHOSTs The default type of native login. 46
47 defaultCONSOLE The default type of console for hypervisor. 47

Table 11.2: ENUMERATE-Output-Format of Sub-Dispatcher

116 CHAPTER 11. RUNTIME INTERFACES

LIST

The following table lists the internal LIST input format from called plugins. This format is
supported from each plugin by mediation of it’s data from the various data sources.

Nr. Field Description Common Remap
1 ContainingMachine Machine hosting a VM. X 1
2 Label User defined unique label. X 3
3 ID The path of the configuration file. X 4
4 UUID The UUID. X 5
5 MAC MAC address. X 6
6 DISPLAY Optional DISPLAY. 8
7 ClientAccessPort Optional client access port. 9
8 ServerAccessPort Optional server access port. 10
9 PID UNIX process ID. 11
10 UID UNIX user ID(any format). 12
11 GID UNIX major group ID(any format). 13
12 SessionType Type of session, a.k.a. plugin. X 2
13 C/S-Type Client or Server flag. 14
14 TCP TCP/IP-Address. X 7
15 JOBID JobID when available. 15
16 IFNAME The name of the interface. 16
17 RESERVED FFS 17
18 CONTEXTSTRG Plugin specific context string. 18
19 EXEPATH The FQDN of the executable. 19
20 HYPERRELRUN Release of actual running hypervisor. 20
21 ACCELERATOR Acceleration component. 21
22 ARCH Provided runtime architecture 22

Table 11.3: LIST-Input-Format from Plugins

Nr. Field Description Common Remap
1 ContainingMachine Machine hosting a VM. X 1
2 SessionType Type of session, a.k.a. plugin. X 12
3 Label User defined unique label. X 2
4 ID The path of the configuration file. X 3
5 UUID The UUID. X 4
6 MAC MAC address. X 5
7 TCP TCP/IP-Address. X 14
8 DISPLAY Optional DISPLAY. 6
9 ClientAccessPort Optional client access port. 7
10 ServerAccessPort Optional server access port. 8
11 PID UNIX process ID. 9
12 UID UNIX user ID(any format). 10
13 GID UNIX major group ID(any format). 11
14 C/S-Type Client or Server flag. 13
15 JOBID JobID when available. 15
16 IFNAME The name of the interface. 16
17 RESERVED FFS 17
18 CONTEXTSTRG Plugin specific context string. 18
19 EXEPATH The FQDN of the executable. 19
20 HYPERRELRUN Release of actual running hypervisor. 20
21 ACCELERATOR Accelleration component. 21
22 ARCH Provided runtime architecture 22

Table 11.4: LIST-Output-Format of Sub-Dispatcher

11.4. PLUGINS INTEGRATION 117

11.4.5 Categories

Category CORE

This category offers basic features, which are generic and applicable to multiple specific plu-
gins. Thus CORE plugins are very close to libraries, but are project specific and loaded
automatically. Sub components could be loaded on demand by generic scanned top-level
entries.

E.g. the CLI CORE component (which has nothing to do with the CLI plugin), handles the
ctys tools specific options scan for a number of tools.

The GROUPS component handles the resolution of group names into host entities.

Category HOSTs

These category contains plugins to be just executed natively within a running OS. Therefore
most of them serve as console clients for VMs.

Currently the plugins CLI, X11, and VNC are supported.

Category VMs

These are the bread and butter applications for stacked VMs. Each of them support at
least one specific VM. Some support multiple variants, when these just do require minor
variations only. When more specifics are required it is recommended to support another one
seperately. This helps to reduce the required runtime resources as well as the reduces the
maintaining efforts, even though some parts might be redundant.

The standard support is available for XEN and QEMU, and for the initially implemented
VMW, which includes Server, Player, and Workstation.

Category PMs

The PMs plugins support the required functionality for handling of physical machines. This
varies somewhat from VMs in various aspects.

The main difference for conceptual reasons might be within the CREATE method, what has
to be executed for the initial "switch-on" of the PM on another machine. This breaks he basic
command call structure as the only exception, where the action arguments "-a CREATE=.."
contains the subparameter referring not to a contained subinstance, but even cross-over to
another machine without any encryption. Which is required for the initial Wake-On-LAN
packet.

OK, this could not really be seen as a security flaw and thus designed this way.

Another point is the automatic opening of a console session. This has to be performed in
an exceptional structure too. This is due to the same reason as the initial WoL packet. The
session could be opened from another machine when the execution-target to be waked up
is SSH-accessible. Therefore a polling mechanism based on timeouts and trial-counters is
implemented.

The stacking and therefore the state-propagation works similar to the VMs.

118 CHAPTER 11. RUNTIME INTERFACES

11.4.6 bash-Plugins and bash-Libraries

The main differences between libraries and plugins are the static load behaviour and fixed
hardcoded load of libraries only. Therefore no init procedure despite the automatic process-
ing of calls is performed. This is equivalent to the init-level 0 of plugins.

Another difference is the more conventional reason than technically, that libraries are de-
signed as generic components to be used in any project. Whereas plugins are specifically
designed in order tto support a unique project primarily.

Plugins are loaded static and/or dynamically. They could be just default initialized when
required.

Chapter 12

CTYS-Nameservices

12.1 Runtime Components

The components of the nameservice are structured as depicted within the figure:9.1 on
page:87 based on the ENUMERATE and LIST action.

The main utilities for queries and the for generation of cache database are as shown the ENU-
MERATE and the LIST action. In addition the tool ctys-vhost manages and pre-processes
the raw data cached in the database. Therefore some pre-processed grouping and mapping is
performed and a second-level cache database is generated from the first-level data which is a
raw local storage. Anyhow, the raw data could already be used as it is, just some additional
time consuming processing is performed for the transformation.

The ctys-vhost utility is the crucial facility of the UnifiedSessionsManager for the performant
handling of data as well as the only viable network service for providing information to
stacked VMs which are nested and therfore not neccessarily visible when the containing VM
is offline. The internal data structure of ctys-vhost is as depicted in Figure:12.1 on page:116.

119

120 CHAPTER 12. CTYS-NAMESERVICES

Figure 12.1: Nameservice components

Part III

User Interface

121

Chapter 13

Common Syntax and Semantics

13.1 General CLI processing

The common structure of the CLI call interface is defined by following basic elements.

<command> \
<local-options> \
[--] \
<common-remote-options> <argument-list>

<argument-list>:=
<argument>[’(’<context-options>’)’][<argument-list>]

<argument>:=<command>
<context-options>:=<local-options>

The options are grouped and assembled by suboptions, which are scanned and operated by
the involved plugins only.

Arguments <execution-targets> can contain their own scope of options and suboptions.
These are pre-analysed on the caller site, but take mainly final effect on the execution site
only.

Within the implementation of ctys the actual application of options within each scan is order
dependant. The options are scanned from left-to-right, and in case of competition the last
will win.

This changes, when subjobs are generated. Each job is resolved with the global remote op-
tions and it’s own options, finally superposed with the actual set pre-environment - including
from the previous jobs. Due to group resolution and the accessibility of several desktops,
some reordering and grouping of tasks can appear.

Pre-required options are prefetched for bootstrap phase itself until the CLI processing parts
are active, this is e.g. the case for options related to dynamic and on-demand load of bash-
libraries.

All keywords in parameters are converted and treated internally as uppercase. Though ’all’
is equivalent to ’ALL’, ’AlL’, and ’aLL’.

123

124 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

The additional extension as described in the following chapters are "group" instances for
a set of hosts,

<argument>=(<host>|<group>)

<group>=<host>{1,n}

and macros, applicable as replacement-alias for any arbitrary CLI part and/or subpart,
within any position except the <command> itself.

<command> <macro-alias>

<macro-alias>=(
[<local-options>]
|[<common-remote-options>]
|[<arguments>]
|[<context-options>]
|[--]
|<any-resulting-sub-string-literal>

){1,n}

13.2 Options Scanners - Reserved Characters

The foreseen and implemented scanners are designed to allow implementation by simply
nesting loops and using sets generated from basic regular expressions. This is particularly
important for simplification of custom plugins. Following special characters are reserved for
options definitions syntax:

’=’: Seperator for option and it’s suboptions. The reason for not using this as repetitive
separator are "CALLOPTS" and "XOPTS", which are bypassed options for remote
execution. These contain almost for sure a "=", but simplicity of the scanner is the
priority here, so a second is choosen for repetition on groups.

’,’: Seperator for suboptions belonging to same group.

’:’: Seperator for suboption keys and it’s arguments.

’%’: Seperator for suboption argument values, will be replaced by space on final execution
target "%==’ ’". Could be masked when required as literal by double-input "%%==%".

’()’: Grouping character pair for target specific options belonging to a common target a.k.a.
host.

’{}’ Grouping arguments for multiple targets including their specific options belonging to a
common high-level-target a.k.a. SUBTASK .

13.3 Hosts, Groups, VMStacks and Sub-Tasks

13.3.1 Common Concepts

The UnifiedSessionsManager supports multiple execution-targets as combined group entity.
A group entity is a logical unit with it’s own execution context.

Group objects are mapped within ctys to one or more specific sub-processes, which are
called SUBTASKS. SUBTASKS could be allocated implicitly and/or by request, and are

13.3. HOSTS, GROUPS, VMSTACKS AND SUB-TASKS 125

distributed locally and/or remotely, and could be used arbitrarily intermixed with the vari-
ous SUBTASK types and or just in-process host execution.

Curent version supports the following Sub-Tasks, which are described in detail within the
following subchapters.

• SUBGROUP/SUBTASK
Sets up a collection of <execution-target> as a flat set of entities starting within the
same call-context, but executed independently.

• VMSTACK
Sets up an execution context for members of a hierarchical stack, thus sequentially
dependent on each other from-left-to-right.

• VCIRCUIT
Sets up an sequential relay chain with pre-assigned intermediate nodes for establishing
an double-encrypted tunnel. The bypassing of Firewalls for specific access groups is
typical application.

The subtask-entity could be used as a replacement for any position where an <execution-
target> may be provided. A subtask could be customized with it’s own context specific set
of options, which will be - dependent on the specific type - permutated to all it’s members.
The basic systax is structured as follows.

<subtask>’{’<execution-target-list>’}’
[’{’<subtask-arguments>’}’]

<sub-task>:=(SUBTASK|SUBGROUP|VMSTACK|VCIRCUIT)

Figure 13.1: Subtask

13.3.2 Flat Execution-Groups by Include

The UnifiedSessionsManager supports for bulk access the concept of preconfigured groups.
A group object, contains multiple instances of host objects and is a syntax element for
replacement of an host entity, representing multiple nested instances. When providing one
or more group entities, either intermixed with host entities or not, one main process(group)
controls the whole set of subprocesses to be performed local or remote.

Figure 13.2: Groupresolution by Include only

The group object can replace any valid execution target and supports context options. Group
objects has to be present on the callers machine, the tasks will be distributed to each member
individually. E.g. the following construct could be used for a group:

126 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

...myGroup1’(-g :A20)’ myHost1’(-d 99)’ myGroup’(-W -g :A10)’...

Any level of nested includes is supported. circular inclusion will be detected at an default
level of 20 and terminated than.

"#include <groupname>"

One example of groups expansion is given as follows:

ctys -a list MYGROUP01’(-d 99)’ hostX MYGROUP02’(-d 3)’

group:MYGROUP01 "#include MYINCLUDE"
"host01,host02"
"host03"

group:MYGROUP02 "hostZ"

group:MYINCLUDE "hostA"
"hostB"

resulting call is - with MODIFIED ORDER:

ctys -a list \
hostA’(-d 99)’ hostB’(-d 99)’ \
hostZ’(-d 99)’ \
hostX’(-d 99)’ \
host01’(-d 99)’ host02’(-d 99)’host03’(-d 99)’ \

For current version nesting of braces is NOT supported, but chaining of braces IS. Permu-
tation is performed for now only for the first level of group resolution. Specific points ofr
current scanner to be aware of is, that due to the following

1. re-ordering of entries

2. the "from-set-on" for all relevant, but not resetted values of the overwritten context
options

it has to be underlined, that when using context options within a group file, all items
has to be set explicitly, or none at all. Other wise a number of side effects might occur
due to unexpected mixture and interference of options from various contexts. This results
technically from the decision to eas the design and implementation within the bash.

13.3.3 Structured Execution-Groups by Sub-Tasks

The group feature is extended within the "ctys" script by the concept of subgroups, which
is slightly different from include.

The inclusion of a nested group is performed once at the beginning of a call, and is resolved
in a "hungry" style, by complete resolution of the whole dependency tree. See figure:13.2 on
page:121.

The resolution of subgroups is performed by a delayed name resolution, which is executed
as a seperate subprocess. The existence of an unresolved group within the defined depen-
dency tree is checked immediately when matched for the existence of the non-included group
definition file, this is done before starting the child process.

13.3. HOSTS, GROUPS, VMSTACKS AND SUB-TASKS 127

Figure 13.3: Groupresolution by Subgroups

The main advance of subgroups is the specific context of execution, where for example a
completly different background operations mode could be established. One common example
for this is the scanning of VM configuration files by "ctys-vdbgen" on machines with limited
resources, where a sequential processing of multiple user accounts is required. This case could
particularly be of relevance, when scanning various VMs on the same PM.

13.3.4 Stacks as Vertical-Subgroups

The VM-Stack implementation by it’s design close to a Sub-Group with just a fixed set of
context options.

The seamless extension of the design concept of SUBGROUPs to VMSTACKs, extends the
"flat-feature" and "horizontal-feature" . These concepts could be applied intermixed, but
the nesting of VMSTACKS is not provided.

Figure 13.4: Combined Subgroups and Substacks

Due to the inherent execution depency by the "hierarchical vertical dependency" of the el-
ements of a VM-Stack, the execution will be forced by the framework to set some generic
attributes on framework level. This particularly controls the hierarchical execution depen-
dency within the "vertical-feature" of a VM-Stack. In addition specific options for the
activation of the stack-control are set.

• "-b SEQ,..."
The VMSTACK feature(at least for now) requires the sequential execution of the parts

128 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

of the requested stack.

The current version supports a "single-line" of a stack for a single call, thus "upper-
trees" and "branches" of entities will be rejected. When multiple instances on a specific
level are required, these have to be executed within multiple STACK-REQUESTS,
which of course might share various parts of their lower branches. The STACK-
REQUESTS could be combined to one "bulk-execution" call, and might not interfere
erroneous, when all have the "REUSE" flag set. Anyhow, due to partly unavoidable
polling, some repetition-counters and timeout values might be set appropriately, as they
are for the most of the cases by the default values.

• "-b SYNC,..."
The sequential execution implies the synchronous execution, because no parallel threads
within a single VM-Stack call are supported.

• "-b STACK[:<max-stack-height>],..."
The key STACK foreces the previous listed keys to be set as described and rejects any
further changes. This key implies and forces to the processing of the whole set of fol-
lowing <execution-targets> as a member of one VM-Stack. Due to possible unintended
calls with groups expanding to a mass of targets, a configurabble threshold value for the
maximum of expected stack members is set by default CTYS_STACKHEIGHT_DEFAULT.
This could be modified persitetntly and/or set call-by-call.

• -a CREATE= STACKCHECK :....
The VMSTACK will be pre-checked concerning various aspects once executed. These
checks could be too restrictive for daily business and might not really be required, there-
fore some should be deactivated when appropriate.

One specific candidate is the CONTEXT property, which represents the location con-
text where the configuration file was orginally detected by ENUMERATE. This defines
by default the "ContainingMachine" as a pre-requisite for the locality of execution.
The configuration attribute EXECLOCATION controls this property, which is actually
the PM/HOST attribute. The default value is set appropriately for the several session
types, and defines independently from the actual existence of additional requirements
whether the machine is fixed to be executed on a specific location. A common rea-
son could be caused e.g. by security, where a critical machine containing data and
access keys for financial departments has to be fixed to a specific location only. The
value ROADWARRIOR defines the VM to be executable anywhere, when additional
pre-requisites are fulfilled. Other VMs, might be more restrictive due to their lack of
support for stacking on other entities. The value LOCAL restricts the execution to the
original scan location. Particularly emulator based VMs as QEMU, which in general
could be executed anywhere, are set to the default ROADWARRIOR. This eases the
initial creation of a cacheDB and requires a smaller amount only, due to the inherent
flexibility of the initial execution location.

The complementary attribute RELOCCAP defines the change of a location for an active
machine, as provided by means of the utilized hypervisor. The STACKCHECK could
be disabled partially or completely, what is foreseen for test cases primarily.

The Figure:13.4 depitcs by the symbolic arrows a probable execution sequence as a depen-
dency caused by nested containment. Thus the "stack-level 02" are remotely executed within

13.3. HOSTS, GROUPS, VMSTACKS AND SUB-TASKS 129

the instances "stack-level 01", as would be the "stack-level 03" within the "stack-level 02".

The previously mantioned basic checks for a VMSTACK include the consistency of the
following characheristics of the stack.

• collectStackData
Collects the data required for further analysis, thus performs the very first check for
the availability of the requierd data.

• verifyCreateOnly
This is a specific test for this version, where the combination of CREATE actions for
VMs/PMs is supported only.

• verifyStacking
This checks the consitency in addresses of the actual call commands.

• verifyStackCapability
This verifies the session type of the VM against the STACKCAP attribute, thus the
availability of the appropriate hypervisor.

Anyhow, due to the option of dynmically start different customized kernels for various
modern OSs, the STACKCAP, which in case of a cached entity is a static snapshot
only, might deviate from the last boot of the actual target. E.g. a VMware configured
kernel instead of a Xen-ified kernel might currently be active, thus this check has some
limitations concening the synchronity of it’s decision base.

• verifyHardwareCapabilityStatic
This verifies the compatibility of the hardware, as presented by the hypervisor to match
the requirement of the GuestOS. This is particularly required for two properties, one is
the architecture ARCH, which has to match the required CPU particularly for emulators
such as qemu-ARM. The second is the virtual RAM, which might be exausted by the
single VMSTACK call and/or by the actually running additional VMs competing for
the available resources.

• verifyStackLocation
This check verifies the location of the various stack entities. Therefore first the check of
the bottom-level entity assures the location for the whole stack, whereas the additional
checks verify the relative stack position of the upper layers, nested within the bottom
element.

The check covers several aspects to be considered for wider stacked operations, where
the embedded entities are not actually aware, and if, cannot really be sure, where they
are actually executed. The first aspect to be covered is the availability of specific re-
sources at a specific physical location - namely machine - only. The location has to
be verified for example in order to have access to a specific local hardware-peripheral,
which might be available at a small number of machines - PMs - only. Also a specific
driver of a VM, which probably is available on specific site only, sould be constraint.
The second more generic, but possibly much more critical aspect is a possible security
flaw, when an intruder becomes able to fake a location in order to hijack the whole,
or just a part of a stack. This becomes quickly clear, when an accounting machine,
implemented as VM, contains probaly some specific data, or access keys. It has to be
recognized, that the owner of the executing base machine is definitely the master of the
nested upper part of the VMSTACK.

130 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

Thus at least a thoroughly performed pre-check for the actual locality before the exe-
cution has to be recommended.

The Figure:13.5 shows a 4-level stack example, which could be started with the following
conceptual call example.

Figure 13.5: Stack Example for Basic Call-Interface

The inter-layer synchronity of the required sequential execution of the stack entities implies
some specific constraints for the eventually choosen CONSOLEs. Thus the application of
CONSOLE type of CLI has to be considered thorougly due to it’s blocking character, which
would block the whole upper stack, when applied. The application is still possible, but with
the main intention of offering a means for application of the CMD feature. The non-
blocking CONSOLE types will be silently forced into non-blocking and parallel operation
by "-b async,par". The later independent creation of detachable CONSOLE types could
be applied as usual. The usage of native HOSTs sessions is synchronous on session-level,
conceptually seen as a non-layer stack-entity, which is embedded into a specific layer instead
of being a layer entity by itself. Thus support for embedded execution of custom commands(
CMD) is assured by sequential left-to-right operation of a VMSTACK.

Figure 13.6: CONSOLE- and HOSTs-Asynchronity for Stacked-Execution

The stack-synchronity of the control flow for the operation, and though the application of
the server components within sequentially dependent script-operations is assured by the "-b
STACK" option, which is implicitly set. The attached CONSOLEs will be just "popped-up"
as choosen.

The following call incrementally startups the stack on the actual physical machine "A", after
it’s activation by usage of the relay wolExecRelayServer(refer to Section ?? ‘??’ on page ??
).

13.3. HOSTS, GROUPS, VMSTACKS AND SUB-TASKS 131

ctys \
VMSTACK’{ \

wolExecRelayServer(-t PM -a create=l:A,WOL)\
\
A(-t SESSION-TYPE01 -a create=B) \
B(-t SESSION-TYPE02 -a create=C) \
C(-t SESSION-TYPE03 -a create=D) \

}’

This is controlled by the detection of the keyword "VMSTACK", which starts a pre-configured
SUBGROUP with specific forced pre-assignment of the "-b" option as described before.

The same call splitted to two calls, a first for the WoL call to start "A" by usage of the
"wolExecRelayServer".

ctys -t PM -a create=l:A,WOL wolExecRelayServer

A second call for incremental startup of the stack on the actual physical machine "A".

ctys \
VMSTACK’{ \

A(-t SESSION-TYPE01 -a create=B) \
B(-t SESSION-TYPE02 -a create=C) \
C(-t SESSION-TYPE03 -a create=D) \

}’

The current version just limits the allowed user suboptions for the "-b" option, but lets
the remining to the responsibility of the user. This offers the flexibility for example to use
intermixed hypervisors, authentication facilities, and CONSOLE types within different levels
of a stack call. But some parameters could only be "late-checked" for applicability just before
the final execution. For this version no implicit creation of stack entities is supported, thus
each CREATE has to be provided by the user, which could be combined to one call.

13.3.5 VCircuits as Sequentially-Chained-Subgroups

REMARK: This feature is currently under development, and thus is possibly partly or at
all not yet available. If so, it will follow soon within an intermediate post-release. Same
is true for the full range of description.

The VCIRCUIT subgroup is by it’s functionality close to the VMSTACK subgroup, which
executes successivley commands of on a set of logically vertical grouped host entities. The
VCIRCUIT utilizes a chained set of machines in order to establish a temporary static en-
crypted tunnel. The peer-to-peer tunnel is in addition to its SSH based sections encrypted
as a virtual circuit, providing a higher level end-to-end channel.

132 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

Figure 13.7: VCIRCUIT

13.4 CLI macros

The MACRO feature supports the usage of a predefined string alias as a literal replacement
within any position of the CLI call.

A macro can contain any part of a call except the command itself. The whole set of required
options including the execution target or only a subset of options could be stored within a
macro.

The macro and it’s content are stored within a file which could be edited by each user or
provided as a common defaults file. MACROs are resolved on each executing machine, thus
even though a client could send a MACRO to the server, in current version the macro is
resolved completely as the first step before the resulting call is processed and distributed.

A macro is defined within the default file named "default" which is searched in the order:

1. "$HOME/.ctys/macros/default"

2. "<actual-call-conf-path>/macros/default"

The <actual-call-conf-path> is evaluated from the resolved symbolic link of the call.

The following call syntax is provided:

MACRO:(
<macro-def>
|
’{’<macro-def>’}’

)

<macro-def> :=
<macro-name>
[%<macro-file-db>]
[%OPTIONAL]
[%(

ECHO
|EVAL]

)
]

13.4. CLI MACROS 133

MACROs could be nested and chained as required. Even though the recursion depth could
be arbitrary a counter is implemented, which sets a threshold limiting recursive processing.
This is set by the configuration variable CTYS_MAXRECURSE. The variable protects all
recursion depths, thus should be handled carefully. Default is 15 levels.

When macros are closely embedded into strings braces could be used, this could e.g. be
applied in order to append contect options to predefined macros.

ctys ’{macro:tst-subgroups-01}(-d 99999)’

Where the macro "tst-subgroups-01" is defined as:

tst-subgroups-01 = -a list SUBGROUP’{host1 host2}’

This expands a the end to:

ctys -a list host1’(-d 99999)’ host2’(-d 99999)’

The keyword "MACRO" prefixes the actual macro alias with the following parts.

<macro-name>
The actual name of the alias to be replaced.

<macro-file-db>
The default macro file could be altered by this new file name. The "macros" directories
will be scanned for a file with given name.

OPTIONAL
The given macro signed as optional, thus if it is not found it will be ignored silently.
Else a missing macro leads to an error and abort.

ECHO
The given macro is inserted by "echo" command into the replacement position, which
is the default behaviour.

EVAL
The macro is evaluated on the callers site by "eval" call and the result is inserted into
the insertion position.

The MACRO feature could be combined with the GROUP feature in various ways, partic-
ularly the combination with the raw syntax of the supported SUBTASKs for SUBGROUP
and VMSTACK is applicable.

The following example shows the call of a predefined SUBGROUP with activated remote
debugging for the "permutated" targets resulting from the MACRO.

ctys ’{macro:tst-02%test-subgroups}(-d 99999)’

The named MACRO-file-db "test-subgroups" contains here the test-case "tst-02" for a
"LIST" action on two remote test-hosts, which is:

tst-02 = (-a list) SUBGROUP’{host01 host02}’

Thus the resulting actual call executed by ctys after MACRO and GROUP resolution is:

ctys ’(-a list)’ host01’(-d 99999)’ host02’(-d 99999)’

134 CHAPTER 13. COMMON SYNTAX AND SEMANTICS

This call suppresses for now the display of a header, just executes on the remote hosts and dis-
plays the actual data-rows. This is due to the missing assignment of a local ACTION, which
is required as an overall controller for actions displaying data in competition for the display.

The following call displays the LIST table including a local header.

ctys -a list host01’(-d 99999)’ host02’(-d 99999)’

The following call in addition first collects data, thus does not poison the result data within
the table with eventual ERROR messages and WARNINGs, but but them before the table.

ctys -a list -C raw host01’(-d 99999)’ host02’(-d 99999)’

For additonal variations refer to the available generic options.

13.5 Common Options

<callopts>
Call options are passed literally to a remote command, therefore no intermediate pro-
cessing is performed. White spaces are not supported and has to be replaced by ’%’.
E.g. "bash -e ls" is masked as "bash%-e%ls".

(CHDIR|CD):<working-directory-change-to> Change current working directory on remote
site before execution of the remote access. This is currently applicable for the X11 and
CLI plugins only.

CMD:<cmd> Replaces the standard definition of a command execution shell by
"CLI_SHELL_CMD_DEFAULT=’bash -c’" for remote execution.

<xopts>
X-options are passed similar to <callopts>, but to a X11 application. The user has to
be aware of the single-hyphen and double-hyphen usage of the various X11, tools for
their options. The core parts for geometry and title are set by ctys.

Be aware, that some of X-options such as "-geometry" and "-name" are already implic-
itly utilized by other options, thus use this if, than CAREFULLY.

(SHELL|S):<shell>
Replaces the standard definition of an interactive shell by
"CLI_SHELL_DEFAULT=’bash -i’" for remote execution.

When setting an own shell the masking of SPACEs has to be applied by "%" in accor-
dance to common ctys cli rules. The default will be applied on command line interface
as:
"... -a CREATE=c:bash%-i ..."

The main difference to the CMD option is the execution of the given command without
starting a new shell previously. Therefore available library functions of ctys could be
called. For examples refer to Section ?? ‘??’ on page ?? .

Chapter 14

Core Data

14.1 Overview

The internal static configuration data is based on the output records of the ENUMERATE
action which has a key role in generating the internal caching database to handle VMs and
PMs and addressing the offline GuestOSs.

The ENUMERATE action scans local and remote filesystems and detects the configuration
files of each active plugin. This is technically performed by calling an internal interface of
each actual loaded plugin in the operational state ENABLED. This is performed on each
enumerated execution-target and collected into a common database on the calling machine.

The data is stored in the MACHINE format, which is a semicolon seperated ASC-II record
format, and could be imported to almost any database and spreadsheet. The description of
the records could be displayed by usage of the common keyword TITLEIDX or
TITLEIDXASC within each reporting action and tool.

The data scanned by ENUMERATE is pre-cached into a local database and managed by
the tool "ctys-vhost" due to the processing time required for a filesystem scan. A similar
reason is the included managemend of entities, which are potentially off-line when the query
for specific attributes is performed. Thus caching supports required functionality for off-line
PMs and VMs as well, as a reduction of the average query-time to less than a second. In
contrast to this, the actual scan of a deeply structure filesystem for a configruation file could
vast minutes resulting from a simple attribute value assertion.

The second main application is the scan for actually operating entities by LIST, which is
based on the internal representation of the common interface LIST, used for various queries
and dynamic ID conversions. For example most of the LABELs are converted by usage of
the LIST action. This could be cached too, but due to it’s realtime or at least near-time
requirement, onyl temporary short-time caches are utilized. Refer to "-C" ans "-b" options.

Even though the data is stored in the standard record format, some minor variations have
to be applied to the various kinds of processing actions. For now basically three variations
are distinguished:

ENUMERATE=<field-name><processing-options>
The collected distributed static and raw data from the configuration files as provided
by the user. Some minor add-ons, such as DNS and MAC resolution, are provided
optionally.

135

136 CHAPTER 14. CORE DATA

The main applications are the internal usage for dynamic path-extension of addressed
targets in actions by usage of the UNIX "find" command, and secondary the pre-fetch
of this information into a static cache database.

LIST=<field-name><processing-options>
The dynamic data of all actual running plugins, this comprises not only the VMs and
PMs, but also the HOSTs and TUNNELs.

The LIST function is the working-horse for displaying and managing the actual dynamic
state of all involved physical and virtual machines, including the contained operational
facilities.

ctys-vhost -o <field-name><processing-options>
The crucial interface to cached offline data for interactive user queries and the internal
first-priority access base for configuration data queries. Refer also to ctys-vdbgen.

14.2 Standard Configuration Files

The plugins provided with the UnifiedSessionsManager could be generally subdivided into
two categories by the way runtime data is handled.

• transient runtime data
These plugins handle dynamic data only, which is valid during their lifetime only. Thess
are particlarly all HOSTs plugins, such as CLI and X11, where particularly temporary
system IDs with temporary LABELs are utilized as aliases.

This category of data is availabe for LIST action only, and cannot be enumerated.
Anyhow, the dynamic instances of the persisten category are included in LIST action
too.

• persistend runtime data
These are mainly VMs, but PMs also, where the majority of required system data is
defined within persistently stored configuration files and within the required runtime
bld/build/output/doc-tmp/en/images.

This category of data as stored instance attributes is available by usage of ENUMER-
ATE and could be therefore prefetched and cached. The entries have to be defined and
maintained by the user as supported for the different plugins.

Due to the integration of various hypervisors with different originators, the configuration
data differs naturally more than having equal parts. The integration into one more or less
seamless and at least basically unified interface is one of the main goals of the UnifiedSess-
sionsManager. The limiting edge of forcing compatibility is reached, when the processing
of the configuration data for the varios hypervisors has to be handled. Therefore the fol-
lowing file-extensions with additional ctys-fields and records are supported. These are the
file-extensions, which the plugins specific ENUMERATE actions are aware off, and though
could be processed by ctys. Other file extensions will be ignored, and therefore are not
accesible.

14.3. COMMON DATA FIELDS 137

Plugin File-Extensions
PM conf
QEMU/KVM 1 ctys
VBOX ctys
VMW vmx,ctys
XEN 2 conf,ctys

Table 14.1: Supported File-Extensions

Basically two types of files could be distinguished, the configuration files with pure configura-
tion data (conf, vmx), and mixed files(ctys), containing configuration data and/or executable
script code, which is defined to be bash-code.

Particularly for QEMU, due to the original command line interface only, some wrappers
are applied for various reasons. Therefore, beneath the VDE/VirtualSquare wrapper for
management of the network interfaces, the ctys-wrapper is introduced in order to handle the
flexibility of the call interface and the amount of call options offered by QEMU.

14.3 Common Data Fields

This section represents the core set of data which is used in several actions. Some of it’s
members are varied within specific call contexts when applied, and are therefore in addition
specialized within the following sections.

ACCELERATOR
The accellerator available for ENUMERATE or actually executed for LIST. The avail-
able types of accellerator depends on the session type. These are for example:

QEMU : KQEMU, KVM, QEMU
VBOX : PARA, HVM
VMW : PARA, HVM
XEN : PARA, HVM

ARCH
Virtual architecture presented to the GuetsOS and hypervisors of upper-stack-layer.

BASEPATH|BASE|B
The path-prefix for the search root by UNIX command "find" to fetch all present config-
uration files within the subtree. This could be a list of nodes to be scanned, as depicted
in the definiton of <machine-address> .

This attribute identifies search groups of VMs as stored and organized within parts of
the filesystem. Thus defines scopes of entities to be visible only for additional selection
criteria.

One typical application is to define a set of VMs within a directory with access per-
missions for a specific group of users only. Therefore canning and caching of data from
that subtree is required for the permitted group only. Due to the supported input pa-
rameter BASEPATH of CREATE action, this could be used for views of work-scope

1For QEMU some extended control of BOOTMODE could be applied in combination with PXE boot.
2Some specific variations to name-conventions are applied on XEN in current version.

138 CHAPTER 14. CORE DATA

organization, as well as basis for load-balancing and various task dispatching groups.
Several views could be organized by usage of symbolic links.

This parameter is applicable to VMs and PMs only, not to HOSTs.

CATEGORY|CAT
The category of the plugin, which could be for now one of: HOSTs, PMs VMs.

CONTEXTSTRING|CSTRG
A private context storage for the plugin.

CTYSRELEASE
The so called MAGICID describing the current release of the UnifiedSessionsManager
which created this record. Therefore each record could be traced to it’s originator for
debugging and compatibility reasons. This is somewhat handy, due to the actually
distributed creation of the semantics at least, which is performed as a standalone task
on each executing target by usage of the local hypervisor and ctys.

This is forseen to handle varying data sources of course.

DIST
The distribution installed within VMs guest or PMs. This parameter is applicable to
VMs and PMs only, not to HOSTs.

DISTREL
The release of the distribution.

EXECLOCATION
Defines the possible execution locations by a customizable list of possible execution
locations. Thus various distribution policies could be implemented including specific
views of an upper-layer semi or fully-automated algorithm.

The availability of the appropriate hypervisor has to be considered by the editor, else a
missing type will be detected by an error when execution starts. This could change also
dynamically, e.g. when during boot time different kernels providing differen hypervisors
are choosen.

Due to distribution algorithms which rely on this set when configured ans activated by
the RELOCCAP option, the value of this parameter should be maintained thoroughly.

The following key values are supported for EXECLOCATION:

• LOCAL
Could be executed at the install location.

• ROADWARRIOR
A VM which could be started at arbitrary location. Anyhow, the availability of the
specific hypervisor is still required.

EXEPATH
The actual path of the executable service access entity.

GATEWAY
The internet Gateway.

14.3. COMMON DATA FIELDS 139

HWCAP
The offered virtual HW capacity by the VM. This is particularly forseen to setup specific
devices, which are physically colocated to a specific PM and are accessible local only.
Examples might be specific HW-Test-Devices, as well as Machines. Another example
are DVD-Recorde, Tape-Drives, specific security devices, or the required DMZ, in order
to limit risks by openning connection with piercing of firewalls.

HWREQ
This parameter is similar to the HWCAP parameter, but describes the required HW.

HYPERREL|HYREL HYPERREL|HYREL
Release of the hypervisor used for installing the VM.

HYPERRELRUN|HRELRUN|HRELX|HRX
The release of the current hypervisor. This is in case of ENUMERATE the locally
available and foreseen hypervisor, whereas in case of LIST this is the actually executed
hypervisor, which in case of some plugings could be varied by call parameters.

ID|I
The ID of a plugin type. The syntactical data type varies for the miscellaneous plug-
ins. For configuration-file based plugins, this is the filepath of a valid configuration file,
unique on the executed machine. The plugin types of PMs and VMs generally support
a configuration file.

For dynamic plugins with temporary and volatile IDs, like CLI, X11, and VNC, the
identifier represents an arbitrary numerical identifier, which is returned by the hosting
system and/or the executed software component.

Following current exceptions and specifics apply:

XEN
The value is the configuration path statically unique on local host, common to IDs
of other VMs.

The volatile domain-ID is handled - due to hypervisor architecture and structural
and dynamic means of accessibility - similar to an ordinary "UNIX-pid".

HOSTs
For plugins of type HOST, which are more or less simple processes offering specific
services, the "UNIX-ID" is utilized.

The "UNIX-ID" could consist of several kinds of entries. A common example is
VNC, where the entries semantic could be one of:
• DISPLAY = VNC-port-offset
• DISPLAY = VNC-port

• Any of above could be context-specific, and utilized more or less correlated by
any other FBP-aware application too. E.g. vncviewer for XEN, QEMU and
WMWare-Workstation 6.

For the CLI plugin the "initial-call-pid" of the topmost UNIX process is used as ID.

140 CHAPTER 14. CORE DATA

So, it is just an abstract ID, no generic overall-algorithm for it’s calculation is
available. The only requirement is uniqueness within the required execution scope,
which additionally could be deactivated by the "-A" option.

IFNAME
The name of the interface within the GuestOS, which is correlated to this data record.

This may vary due to several reasons, thus the synchronity is within the responsibility
of the user.

JOBID
The internal Job-ID assigned by ctys. The Job-ID is relevant for CREATE action only,
though the remaining are just temporarily active, could be called "transient" actions.
The CREATE action itself is transient too, but it’s entity might be a "longer running"
item, thus will be called "qualified as persistent" here, emphasizing it’s existence after
the final return of the CREATE request.

Currently not all types of plugins assign persistent JOBIDs, thus could be listed only
during initial execution. One example is the PM plugin when used with WoL.

The data required for display of JOBID is stored within a temporary file related to the
PID of the item as displayed by LIST action. This data could be stored in shared mode,
which enables anyone to display the full size of the LIST records, or it could be stored
as private data, which just grant access permissions to the owner. This is controlled
by the variable MYTMPSHARED within the configuration file "ctys.conf" and/or by
pre-setting environment variable "MYTMPSHARED=NONE".

The SHARED usage might not be security relevant, due to usage of the private data
first with priority, whereas "not-own" entities from shared directory are controlled by
systems security facilities.

LABEL|L
LABEL is a user defined alias as a user-friendly replacement for the ID. The various plu-
gins set different requirements for the LABEL. So the Xen plugin requires a mandatory
domain name for a DomU, which is used as LABEL. The VMware plugin utilizes the
optional "displayName" as LABEL. For the QEMU an own configuration file format is
defined. The PM plugin uses the DNS name as LABEL.

For the HOSTs plugins the label is a call parameter, which is associated to the callee,
temporarily valid for the current session only.

Any contained ":"-colon will be replaced by an "_"-underscore.

MAC|M
The preconfigured Ethernet MAC address. In current release only static configured
MAC addresses are supported. Particularly any mapping information of associating
Ethernet addresses with TCP/IP addresses has to be statically assigned, and could be
generated from DHCP configuration files and/or ping+ARP caches. Address pools of
DHCP are not supported.

Only applicable to VMs and PMs.

14.3. COMMON DATA FIELDS 141

REMARK: In case of multiple interfaces for an instance, each interface is enumerated
as a seperate entity and eventually stored in the cache database.

NETMASK
Internet Netmask.

NETNAME
Name of the interface as to be used for external access. This is frequently the DNS
name, which is recommended to be configured within DHCP. This should be done,
even though the interface is probably used "addressless", e.g. for sniffing purposes.
The inclusion within teh DHCP database provides automatica conversion into cacheDB
and thus enables the usage within the UnifiedSessiosnManager. This is required for
utilising WoL, where the actual interface on the host might be addressless(refer to
Section ?? ‘??’ on page ??).

OS|O
The OS running witin the queried PM or VM. Not applicable to HOSTs category.

OSREL
The release of the OS.

PM|HOST
The TCP/IP address of the hosting machine, which is derived fom the "uname" output.
This field exists for all local interfaces and has to be distinguished from the NETNAME.

This could be a PM, which is the founding physical machine, running the whole VM
stack contained, or in case of an contained entity within the VM stack it is a VM itself,
executing virtually as a PM for a nested upper stack VM itself.

PNAME|P
Almost the same as <ID|I>. This is due to the usage of filepathname of the configura-
tion as an unique ID at least within the namespace of a single hosts filesystem.

RELAY
The interface, bridge, switch/hub, or the router, which interconnects the VM to the
network. Could be a host-only and/or an external connection.

RELOCCAP
The capabilities offered by the VM for relocation of it’s execution base. The current
version supports the following values only, which could be applied in combination:

• FIXED
The VM could not be relocated at all. It is executable at the install location only.

• PINNED
The VM could not be relocated once it is started. A common reason could be the
attachement to a specific hardware device, which possibly might be even available
locally only.

An example may be a debugging device for an embedded system, which is accessable
by LPT device on local PM only.

• ROADWARRIOR
A VM which could be allocated and reallocated arbitraily, as though not specific
requirements to the execution base is given. Anyhow, the availability of the specific
hypervisor is still required.

142 CHAPTER 14. CORE DATA

• <EXECLOCATION>
The VM could be executed on a member given by the EXECLOCATION parame-
ter only, which itself could contain GROUPs and MACROS. The execution string
will be assembled by evaluating any extended-distribution criteria on the VM.

These include the load in the sence of internal load to a VM limited by additional
facilites, not just the pure processing capacity of the physical CPU. In addition some
restricted and/or limited resources have to be assigned, which could be specific
devices. E.g. a special type of printer, plotter, or cutting machine, which has
limited access due to serialization via a batch-queue. This requires the distribution
of the VM to another stack located on a differen physical machine, even though the
actual load on the first targeted machine might suffice a simple avarage-CPU-load
balancing criteria.

SERNO
An arbitrary serial number for the VM stored in the configuration file. This number
should be unambiguous.

SPORT
Server access port for execution of an administrative TCP/IP connect, seperated from
the user access. This is the raw port to be used for server specific admin tools, which
is different from user’s client access.

For XEN this port is not supported due to security reasons.

For QEMU this port represents the monitoring port as a UNIX-Domain socket with
specific naming convention.

SSHPORT
Alternative port for "-p" option of SSH, default when absent is given by the system
as "22". Multiple ports in varying sets for each interface are supported by OpenSSH.
For information refer to "OpenSSH" [119, OPENSSH] and "SSH The Secure Shell" [26,
SSHDefGuide].

STACKCAP|SCAP
The list of capabilites of the embedded support for the upper-peer-stack-level.

STACKREQ|SREQ
The list of capabilites of the required support from the founding bottom-peer-stack-
level.

TCP|T
The ip addresses of the GuestOS interfaces running within the VM. Each interface could
have multiple assigned IP addresses.

When enumerating the IP addresses, the MAC entries and the IP entries are scanned
and correlated to each other based on the given numbers or the order only. The usage of
the ordering position as index is applied specifically to Xen, due to lacking a numbering
scheme for it’s interfaces.

REMARK:
In case of multiple interfaces and/or addresses for each address of - a so called

14.3. COMMON DATA FIELDS 143

"multi-homed" machine - a sepereate entry is generated, thus it is listed as a seper-
ate host entry.
An interface without a MAC address is currently accepted, but generates a warning.

TYPE
Output of the type of session, either of category VM, PM, or a HOST by it’s plugin
name. The type of a session is to be used for the "-t" and "-T" options.In current
version the following sessions are supported in the base set: CLI, X11, VNX, QEMU,
VMW, XEN, PM

USERSTRING|USTRG
A string to be customized by the user, forseen as as a reminder to be displayed only.

UUID|U
The UUID is not neccessarily required, even though providing a quite well fitting glob-
ally unique identifier. The value could be generated e.g. by "uuidgen", but should be
used as provided in case of PMs for hardware devices. For VMs and GuestOs it could
be generated by the tool "ctys-genmconf".

The uuid is generally applicable for VMs and PMs only.

OSREL
The version number of the installed GuestOs distribution within the VM or PM.

The uuid is generally applicable for VMs and PMs only.

PLATFORM|PFORM
Virtual device, which is a unique identifier for the virtual hardware, either a PC-base,
Server, or an embedded device.

VCPU
The pre-configured number of V-CPUs.

VERSION
The version of the VM config.

VMSTATE|VSTAT
The following values are applicable as actually stored attributes. The values could used
in query tools either by their literal values, or by choosing a processing-only meta at-
tribute for the selection of a sub or superset.

The state value is semantically checked when generating a cacheDB by "ctys-vdbgen"
and "ENUMERATE" . The post-processing and analysis tool "ctys-vhost" for now
just does a generic pattern match on the record-stream from the cacheDB. Ambiguity
has to be avoided by the user.

Additional values could be defined by the user and will be addeded to the cacheDB.
Due to some semantic checks in order to detect mistyped standard attributes, these are
required to be deactivated by the CUSTOM key before the position of the arbitrary
key. The CUSTOM key is valid for any following key not matching a pre-defined.

REMARK:
Attribute values have to be stored literally as uppercase, the later match by scan-
ning via ENUMERATE is performed as uppercase only.

144 CHAPTER 14. CORE DATA

The following values are predefined standard states:

ACTIVE
The VM is actively participating in operations, thus ready to be used in a produc-
tion environment.

BACKUP
The VM is a backup of an existing VM, not neccessarily, but recommended of
ACTIVE state.

DEACTIVATED
The VM is present but the configuration data could only be accessed partially. The
common reason is the missing of access permissions, in some cases a registration of
the VM to the native administration component is required. The concrete definition
and required actions are defined by the specific plugins.

TEMPLATE
The VM is a template to be used as custom base for productive VMs. The VM
itself could be operable, but does not require so.

TESTDUMMY
The VM is a installed configuration only for testing and validating the basic func-
tionality of the VM.

The processing attribute MATCHVSTAT provides means and additional operations-
attributes for selection of subsets.

VRAM
The pre-configured amount of RAM.

VNCBASE
Base port for calculations of ports from display and vice versa. The default is 5900.

VNCDISPLAY|DISP
DISPLAY to be used by XClients, which in case of VNC is already calculated by usage
of context-specific PortOffset.

VNCPORT|CPORT
Client access port for execution of a TCP/IP connect. This is the raw port to be
used for vncviewer or proprietary clients with their own MuxDemux-dispatcher. This
is required for example with VMW when using the workstation product of version 6.

14.4 Common Processing Options

CTYSADDRESS|CTYS
A fully qualified address to be used within ctys. This includes the complete address for
the whole execution-stack of the destination instance, beginning with hosting PM.

Whereas almost any other output is just a subset of the generated static database,
this value is the result of the assembly of multiple items to a complete address for an
unambiguous execution path. The namespace could be the private network or even the
global network, when globally unique PM addresses as FQDN are used.

A typical addressing of an entity within a stack is:

<host>[<vm-level-1>][<vm-level-2>]<host-acces>

14.4. COMMON PROCESSING OPTIONS 145

For a concrete example this results to:

lab00.tstnet0.com[l:tstDomU01][t:tst3]’(
-a create=l:myVNC01)’

or by an aternative address pattern:

lab00.tstnet0.com\
[l:tstDomU01]\
[p:/home1/qemu/tst3/tst3.ctys]’(-a

create=l:myVNC01)’

The syntax describes a VM stack path to be used in order to execute an action within
the topmost element.
Intermediate stack entries will be created by usage of default values when missing,
default values are assumed for any missing option. Therefore the provided address in-
formation is accomplished from the required cached data by usage of ctys-vhost. The
execution only performs, when the reuquired data could be queried unambiguously from
the available database. Else additional key information has to be provided by the caller.

The following example shows the usage of different authentication methods to the
GuestOs.

lab00.tstnet0.com’(-Z NOKSU,SUDO -z pty,pty)’\
[l:tstDomU01]’()’\
[p:/home1/qemu/tst3/tst3.ctys]’(-a create=l:myVNC01)’

Even though the machine "tst3" could be directly addressed when in bridged mode and
is accessible, namely already running, in case of CREATE and CANCEL the access
to the hosting system is crucial. In case of CREATE, the extended addrssing schema
contains the physical loaction where the stack entitity has to be executed, which could
be extended by usage of wildcards for load-balancing or specific service distribution. In
case of CANCEL the hypervisor could be involved into the shutdown, which is hidden
else for access from within the GuestOS.

DNS
Output of TCP/IP address (any valid for the VM). This option supports the name
representation as reported by DNS, for the numerical representation refer to IP.

ATTENTION: Only the first match will be listed when multiple addresses are present
for the same entity.

IP
Output of TCP/IP address. This option supports the numerical representation, for the
DNS name representation refer to DNS.

MACHINE
Complete records matching the <regexpr-list> in terse format for postprocessing. The
output is a semicolon seperated list of record, compatible with most spreadsheet appli-
cations . A title with the actual canonical field indexes could be displayed when com-
bined with TITLEIDX . The extended variant TITLEIDXASC displays additionally
the common column indexes for spreadsheet forms supporting the manual modification.

146 CHAPTER 14. CORE DATA

MATCHVSTAT
The MATCHVSTAT key supports selective operations on stored VM configuration
records. Therefore in addition to the stored values of VMSTATE some operational
attributes are defined, controlling sub and supersets.

The following values are applicable for attributes controlling the match process only
and are therefore not stored literally.

ALL
This simply sets the value to be ignored and matches any present and valid entry.
When applying to ENUMERATE on stored configuration files, the MAGICID still
will be applied and might superposition the semantics of the VMSTATE attribute
due it’s higher severity.

CUSTOM
This key deactivates the validation of keywords, which allows arbitrary keywords
to be used. This opens particularly the usage of custom VMSTATEs for definition
of various scopes of sets to be included into the cacheDB.

EMPTY
This value simply sets the select to non-existing state.

PRESENT
This value simply sets the select to any but present state.

The default match value is:"ACTIVE|EMPTY".

MAXKEY
The maximum common set of attributes for LIST and ENUMERATE.

PKG
The list of packages, a.k.a. plugins, to be displayed, any other will be suppressed.
The syntax is as common:"PKG:pkg01%pkg02%...".

REC_GEN|REC:<tab-args>
Defines proprietary records for formatted output.

SORT[:<sort-args>]
Sorts the body of table with given scope on the column of defined <sort-key>. This
is mainly a sort on the first column. It first collects therefore the whole data of each
machine, before displaying the result almost at once. No progress indicator is shown.
Due to the smaller sort-scope the partial delays might not be too long.

Additionally the option "-C" influences the scope of sort, where without activated
caching the scope is each executing machine, leading to a concatination of sorted sub-
lists. When caching of the complete and raw result is choosen, the scope of sort is
the whole result, displaying the list with sort applied to the complete set of records.
Anyhow, when the first file is the PM/VM the result should be the same by default,
until a specific sort-field is selected, which deviates from the default-field=0/1.

<sort-args>=[ALL|EACH][%UNIQUE][%<sort-key>]

ALL
The sort is performed on top-level spanning the whole resulting table content.

EACH
The sort is performed on level spanning solely each of the executing machines. The
result is therefore grouped by execution targets.

14.4. COMMON PROCESSING OPTIONS 147

UNIQUE
Activates a pre-final filter for call of "sort -u".

<sort-key>
Defines a sort key as "-k" option for "sort -k <sort-key>". The <sort-key> is
the column index of the resulting outout table as displayed, enumeration is an
increment beginning with "1".

SPEC_GEN|SPEC:<tab-args>
Defines check records for formatted output.

TAB_GEN:<tab-args>
Defines tables for formatted output. A simple set of macros is defined for the setup of
a table definition compatible with most spreadsheet applications.

TERSE
Lists the displayed items in machine processable way, it is the same format as with "-X"
option.

TITLE
Optional "title" could be applied for header listing of field/column names.

TITLEIDX
Almost the same as "title", shows in addition the absolute and canonical field/column
positions for addressing when a generic table is defined. The resulting output format is
defined as the list of all actual selected field names, each displayed with it’s canonical
index. For the output of all fields TITLEIDX has to be combined with MACHINE .

FIELD(index)

The current implementation for ENUMERATE yields to the default:

ContainingMachine(1);ID(4)

The complete record is displayed in combination with MACHINE as:

ContainingMachine(1);SessionType(2);Label(3);ID(4);
UUID(5);MAC(6);TCP(7);DISPLAY(8);ClientAccessPort(9);
VNCbasePort(10);Distro(11);OS(12);VersNo(13);
SerialNo(14);Category(15)

The output is compatible with various spreadsheet applications .

TITLEIDXASC
Almost the same as TITLEIDX, but with additional display of column indexes for
various spreadsheet calculation programs.

USER:<user>%[<credentials>]
The user to be used for native access to the <action-target>. This is required fre-
quentyl for ACTIONs supporting the "Peer" mode and the "Auto-Stack" mode .
Default useris the same as used for authentication on the execution target. The default
authentication method is determined by the login target.

The alternative user could be provided either without specific credentials for usage with
a configured network based authentication, or with one of the supported types of cre-
dentials. Following keywords are case-insensitive.

148 CHAPTER 14. CORE DATA

USER:<user-name>[%<credentials>]

The following applies to the <credentials>, which could be of various types.

credentials:=<credential-type>%%<credential>

Current version supports pre-configured network authentication only, either interactive,
or by a specific protocol like GSSAPI/TLS, thus the <credentials> field is not yet
supported.

XML_GEN|XML:<tab-args>
Defines XML records for postprocessing output.

14.5 Specific Variations

BASEPATH|BASE|B:<output>

(BASEPATH|BASE)[:[<top-level>][%<bottom-level>]]{1,n}

The path-prefix for the configuration file of the current VM. This identifies search groups
of VMs as stored and organized within parts of the filesystem.

Due to the supported input parameter BASEPATH of CREATE action, this could be
used for views of work-scope organization, as well as basis for load-balancing and various
task dispatching groups. Several views could be organized by usage of symbolic links.

GROUP
The actual group id of remote server process.

USER
The actual user id of remote server process.

PID
The pid of remote server process.

TUNNEL|SERVER|CLIENT|BOTH
List all selected types of connections on selected host. Default is S, which is similar to
the definition of a session.

The following sets could be selected:

TUNNEL: tunnels only

CLIENT: clients only

SERVER: servers only

BOTH: Yes, ehhh, all three.

14.6. GENERIC TABLES 149

14.6 Generic Tables

Several actions, particularly the GENERIC class of calls INFO, LIST, ENUMERATE, and
SHOW support data to be displayed in multiple specific views. The same applies for some
support tools, particularly "ctys-vhost". The views may vary form task to task and should
emphasize different topics.

Therefore the output could be adapted by the user with generic tables, which support a
simple syntax with required minor knowledge only. These custom calls, which are based on
a suboption for the specific action, could be stored as a MACRO and reused later. The
recursive MACRO resolution supports for modularized table definitions which could be
reused within the same ACTION, but due to canonical standard parts of some ACTIONS
as LIST and ENUMERATE, also partly within multiple ACTIONS. An example could be
found in Section ?? ‘??’ on page ?? .

REMARK: Currently the actions LIST , ENUMERATE and ctys-vhost , support generic
tables only, others will follow within next versions.

The common syntax for definition of a generic table is the following snippet of syntax, which
has to be a supported suboption of the called ACTION.

-a <action>=(
<action-other-subotps>
[TAB_GEN[:<tab-args>]]

)

<tab-args>=<idx>_<colname>_<width>[_L][%%<tab_args>]{0,n}
[,titleidx]

Each field entry has to be seperated by a double percent character "%%", as this is a
parameter for the table processor itself, not the cli.

TAB_GEN
The generic table processor to be invoked for evaluation of table parameters.

<idx>
The canonical field index as provided by the ACTION. For the display of the actual
values refer to "TITLEIDX" .

<colname>
The name of the column to be displayed in the table header.

<width>
The width of the table, which will cut the entry to the given value, if the size is exceeded.

B
This optional key switches to clipping and insertion of a break. The table is expanded in
it’s length for each of required breaks. The cut is made arbitrarily, without recognition
of the actual semantics within the specific field.

150 CHAPTER 14. CORE DATA

REMARK:
In current version "B" is not compatible with the SORT option.

L
This optional key switches to leftmost cutting of fields, clipping it to it’s trailing part,
when the <width> is exceeded.

title,titleidx,machine
Any ACTION has to support a mandatory suboption TITLEIDX in addition to the
implementation of TAB_GEN.

The "TITLEIDX" option displays the titles of each field with its positional index
parameter as supported by the canonical record for MACHINE suboption. This is the
index to be used by the underlying generic awk-script for the positions to be printed.

The <colname> parameter is case sensitive and therefore displayed literally. Restric-
tions for the available character set are the exclusion of reserved ctys-characters and
the exclusion of any WHITESPACE, including CR. Comments and Whitespaces within
the macro file are ignored.

14.7 Generic Records

The GENERIC class of actions LIST and ENUMERATE, additionally ’ctys-vhost’ support
data to be displayed in record formats.

The output could be adapted by the user with the same suboptions as for generic tables,
but representing a line oriented attribute output.

The following formats are currently available:

1. REC
A propriatary record format:

record(#rec-idx):={
{#field-idx, attr-name, attr-val},
{.....

}

2. SPEC
A meta-data record format for testing of data with easy readabilty:

record(#rec-idx):={
#field-idx attr-name: attr-val
#field-idx attr-name: attr-val
#field-idx attr-name: attr-val
.....

}

3. XML
An export format for post-processing:

<record index=#rec-idx>
<attr-name index=#field-idx>attr-val</attr-name>

14.7. GENERIC RECORDS 151

<attr-name index=#field-idx>attr-val</attr-name>
.....

</record>

.

Chapter 15

Address Syntax

This document describes the common generic address syntax for the command line
interface. Additional data interfaces e.g. for LDAP and SNMP exist and may support
additional features.
This specification describes the common generic address syntax for the management of
single machines and groups of entities. This suffices all supported systems and may for
some plugins applicable as a subset only.
The current version provides almost only the<machine-address> and theGROUPS
objects, thus the remaining definitions were required for the design of an extendable
overal concept.

15.1 Basic Syntax Elements

The addressing facility including the namebinding is splitted into a logical description
as a general view and it’s conrete adaptions which could be implemented by multiple
presentations. The foreseen and implemented syntax scanners are designed to allow
implementation in a straight-forward manner allowing an simple implementation of hi-
erarchical structured syntax definitions by nested loops.

The following characters are reservered syntax elements, the full set and description is
given in the chapter "Options Scanners - Reserved Characters".

’=’ Option/Attribute Assignment Seperator for an option and it’s suboptions.
E.g. the CREATE action may be proceeded for a new client to be connected to a
running server, here the default type ’-t VNC’.

ctys -a create=CONNECT ... myAccount@myHost

’,’ Option/Attribute Seperator Seperator for suboptions belonging to one set of
suboptions.
E.g. a hanging machine may be rebooted, where the hypervisor is utilized to a
forced reboot of the locked guest os.

ctys -t QEMU -a cancel=REBOOT,FORCE ... myAccount@myHost

’:’ Option/Attribute Value Assignment Seperator for a suboption key and it’s ar-
guments.
The string representation of the identifier for a session.

153

154 CHAPTER 15. ADDRESS SYNTAX

ctys -a create=LABEL:UserString ... myAccount@myHost

’%’Option/Attribute Multiple-Value Seperator Seperator for suboption argument
values.
E.g. VMware 2.x a credential is required, which could be either suppressed and
later provided by the openning dialogue mask, or provided in clear on commandline.
A secure alternative may be the application of Kerberos.

ctys -t VMW \
-a create=LABEL:MyMachine,USER:myAccountA%mySecretPasswd \
myAccountB@myTargetHost

’()’ Option/Attribute Sets Grouping target specific context-options belonging to
a common target a.k.a. host.
E.g. the previous example could be written as:

ctys myHostAccount@myTargetHost’(\
-t VMW \
-a create=LABEL:MyMachine,USER:myVmAccount%mySecretPasswd\

)’

This particularly enables the superposition of specific attributes for each of multiple
targets:

ctys -t VMW \
myAccount@myTargetHost00’(\

-a create=LABEL:MyMachine,USER:myAccount00%mySecretPasswd00 \
)’ \
myAccount@myTargetHost01’(\

-a create=LABEL:MyMachine,USER:myAccount01%mySecretPasswd01 \
)’

The following arguments handle in general groups of syntax elements defining a set of
elements as a group. This comprises the definition of a set of elements on the same level
- as siblings, and the definition of a vertical structure of a path - parent-child relations.
The contained elements could be targeted instances as well as sets of attributes for a
specific instance or a group of instances.

’,’ Path-Operator Seperator for sets of attributes and targets on the same level.
The following entities belong to a common level.

ctys -t create=LABEL:myTest host00,host01,host02

Due to supported common legacy syntax of host addressing the previous example
could also be written as

ctys -t create=LABEL:myTest host00 host01 host02

’.’ Set-Operator Seperator for paths of nested attributes and targets.
The address of VM running on a specific physical machine could be written as:

ctys -t create=LABEL:myTest myAccount@host00’(-z)’.vm01’(-t VMW -a create=LABEL:...)’

’’ Group Operator This ist the common set operator for grouping related syntax
elements. Thus braces could be applied to attributes as and to containing instances.
This may be particularly required to resolv ambiguity when third-party tools with
independent call syntax may be utilized.

15.1. BASIC SYNTAX ELEMENTS 155

(a) Attribute Groups
The following application shows the application for grouping of syntax-element
when a MACRO is applied.
ctys ’{macro:tst-subgroups-01}(-d 99999)’
Where the macro is defined as:
tst-subgroups-01 = -a list {host1 host2}
The final expanded syntax is:
ctys -a list host1’(-d 99999)’ host2’(-d 99999)’

(b) Target Groups
Grouping arguments for multiple targets including their specific options belong-
ing to a common high-level-target a.k.a. SUBTASK
The following entity defines a group of entities as a new instance, which is a new
instance consisting of the set of it’s memebers including their context specific
suboptions.
myGroup00:={

myTargetHost00’(-t VMW -a create=LABEL:MyMachine00a,USER:myAccount00%mySecretPasswd00)’, \
myTargetHost00’(-t VMW -a create=LABEL:MyMachine00b,USER:myAccount00%mySecretPasswd00)’, \
myTargetHost01’(-t QEMU -a create=LABEL:MyMachine01a)’

}
The new group instance could be applied as:
ctys myGroup00

The destination address of each target could be named by any element of it’s <machine-
address> as described in the following chapter. In some cases a single attribute may
be ambiguous within a distributed multi-user environment. This could for example be
true for the hostname of a single virtual machine. Thus multiple attributes may be be
required for a unique address.

’[]’ Pre-Attribute-To-Address Conversion Grouping multiple attributes to a unique
attribute set for unambiguous resolution to target addresses.
The following entity defines a host unambiguously. This could be applied for exam-
ple to test machines, which may be a simple backup, or redundant due to intention.
In case of the UnifiedSessionsManager the automated inventory scanner registers
by default each present machine without redundancy checks for specific attributes.
Thus an identical copy running in physical different private subnets behind NAT
routers with identical IP ranges may occur redundant for a variaty of attributes.
These targets could be addressed e.g. in the following way.
(a) Check execution state

ctys [LABEL:myMultiHost,BASEPATH:/mntn/myTestPool01/myHost007]

(b) Check run state
ctys -a show [LABEL:myMultiHost,BASEPATH:/mntn/myTestPool01/myHost007]

(c) Check static information
ctys -a info [LABEL:myMultiHost,BASEPATH:/mntn/myTestPool01/myHost007]

(d) Display inventory data

156 CHAPTER 15. ADDRESS SYNTAX

ctys-host [LABEL:myMultiHost,BASEPATH:/mntn/myTestPool01/myHost007]

The brackets pre-resolv the attribute set to an appropriate target address.

The current syntax description may not yet formally be absolutely correct nor complete,
but may cover the intended grade of open description and required understanding for
it’s application. Some modifications are still under development.

15.2 SyntaxExamples

The previous elements provide for flexible and simplified addressing of hosts and con-
tained applications. This could be as simple as

ctys-host -a create=LABEL:myDesktop

which starts a VNC desktop on ’$USER@localhost’ and assigns the symbolic name
’myDesktop’ to it. Same for a remote host ’$USER@myHost’

ctys-host -a create=LABEL:myDesktop myHost

which starts a VNC desktop(the configured default) on the host ’myHost’ and assigns
the symbolic name ’myDesktop’ to it. The so called label ’myDesktop’ could be used
as a full scale address id for all further calls.

When required also a some more sophisticated call of a VM stack could be performed
too:

ctys \
[UUID:3f95fea7-ee51-445b-95ee-4e432e6e4187]\
.{ \

[LABEL:myMultiHost,BASEPATH:/mntn/myTestPool01/myHost007]’(\
-t VMW -a create=LABEL:MyMachine00a,USER:myAccount00%myPasswd00\

)’\
,\
myTargetHost00’(\

-t VMW -a create=LABEL:MyMachine00b,USER:myAccount00%myPasswd00\
)’, \

}’(-d 99999)’ \
,\
myTargetHost01’(\

-t QEMU -a create=LABEL:MyMachine01a\
)’

15.3. ADDRESSSYNTAXELEMENTS 157

15.3 AddressSyntaxElements

The following namebinding defines the superset of addressing attributes, which supports
explicit addressing of targets as well as generic addressing of single and multiple targets
by using search paths and content attributes in analogy to wildcards, a.k.a. keywords or
attribute value assertions. The given sub-options are defined by default not to be order
dependent, but some may influence the remaining. The keywords are case-insensitive.

The contained parenthesis, angle, and square brackets in the following figures are syn-
tactic helpers. When they are part of the syntax, they will be quoted with single
quotation marks.

The addressed top-level entity is the APPLICATION, thus here the<target-application-
entity>. This contains in analogy to the OSI model the machine as well as the access
point.

<target-application-entity>:=<tae>
<tae>:=[<access-point>]<application>

<access-point>:={
<physical-access-point>

\begin{center}\begin{tabular}{l}
<virtual-access-point> \\
<dialogue-access-point> \\
\end{tabular}\end{center}

}

<application>:=<host-execution-frame><application-entity>

<physical-access-point>:=<machine-address>[:<PM-access-port>]
<virtual-access-point>:=<machine-address>[:<VM-access-port>]
<dialogue-access-point>:=<machine-address>[:<HOST-access-port>]

Figure 15.1: TAE - Target Application Entity address

The machine is addressed by the <machine-address>, which represents physical and
virtual machines as well as login-sessions provided by the HOSTs plugin. The specific
plugins may suppport a subset of the full scope, but the attributes ID and LABEL are
supported in any case. The ID attribuet is here either a persistent identifier, in case of
a VM a configuration file, or a dynamic identifier in case of the HOSTs plugin, e.g. for
VNC the DISPLAY number excluding the port-offset. Whereas it is defined for X11 as
the PID.

158 CHAPTER 15. ADDRESS SYNTAX

<machine-address>:={
(

[(ID|I|PATHNAME|PNAME|P):<mconf-filename-path>][,]
|
[(ID|I):<id>][,]

)
[(BASEPATH|BASE|B):<base-path>[\%<basepath>]{0,n}
[(LABEL|L):<label>][,]
[(FILENAME|FNAME|F):<mconf-filename>][,]
[(UUID|U):<uuid>][,]
[(MAC|M):<MAC-address>][,]
[(TCP|T):<TCP/IP-address>][,]

}

Figure 15.2: Machine-Address

The type of access varies for the different <access-point>. Therefore the <access-port>
has to be provided in several variants which are specific for the various products. The
following figure depicts the major items, additional may be required, which are described
within the specific subsystem.

<PM-access-port> := (CLIcon|RDPcon|VNCcon|X11con)
<VMaccess> := (QEMUcon|VBOXcon|VMWcon|XENcon)
<HOSTaccess> := (CLIcon|RDPcon|VNCcon|X11con)

Figure 15.3: <access-ports>

These items represent the various plugins, particularly the HOSTs plugin as a set of
major desktop and console plugins commonly used for dialogue and batch access to the
VMs and PMs.

Each of the listed access types provides several additional options related to the protocol
access point and additional feature parameters. These paramteres are described within
the specific plugins documents.

CLIcon := (SHELL)
QEMUcon := (QEMU-SDL|CLI|VNC|X11)
RDPcon := (RDESKTOP)
VBOXcon := (VirtualBox|VBoxSDL|RDP)
VMWcon := (VMware|vmware-rc|firefox|VNC)
VNCcon := (VNCVIEWER)
X11con := (XTERM|GTERM|EMACS|EMACSM|EMACSA|EMACSAM)
XENcon := (CLI|VNC|X11)

Figure 15.4: CONSOLE types

<access-point> The complete path to the execution environment.

<access-port> The port to be used on the access-point.

<application> The application itself, which has to be frequently used in combination
with a given service as runtime environment.

15.3. ADDRESSSYNTAXELEMENTS 159

<application-entity> The executable target entity of the addresses application, which
could be an ordinary shell script to be executed by a starter instance, or an self-
contained executable, which operates standalone within the containing entity. E.g.
this could be a shared object or an executable.

(basepath|base|b):<base-path>1,n Basepath could be a list of prefix-paths for us-
age by UNIX "find" command. When omitted, the current working directory of
execution is used by default.

(filename|fname|f):<mconf-filename> A relative pathname, with a relative path-
prefix to be used for down-tree-searches within the given list of <base-path>.

So far the theory. The actual behaviour is slightly different, as though as a simple
pattern match against a full absolute pathname is performed. Thus also parts of
the fullpathname may match, which could be an "inner part". This is perfectly all
right, as far as the match leads to unique results.

More to say, it is a feature. Though a common standardname, where the containing
directory of a VM has the same name as the file of the contained VM could be
written less redundant, when just dropping the repetitive trailing part of the name.

<host-execution-frame> The starter entity of addressed container, which frequently
supports a sub-command-call or the interactive dialog-access of users to the target
system.

(id|i):<mconf-filename-path> The <id> is used for a variety of tasks just as a neu-
tral matching-pattern of bytes, an in some cases as a uniqe VM identifier within the
scope of single machine. The semantics of the data is handled holomporphic due
to the variety of utilized subsystems, representing various identifiers with different
semantics. Thus the ID is defined to be an abstract sequence of bytes to be passed
to a specific application a.k.a. plugin, which is aware of it’s actual nature.

The advantage of this is the possibility of a unified handling of IDs for subsystems
such as VNC, Xen, QEMU and VMware. Where it spans semantics from beeing
a DISPLAY number and offset of a base-port, to a configuration file-path for a
DomU-IDs, or a PID of a "master process".

This eases the implementation of cross-over function like LIST, because otherwise
e.g. appropriate access-rights to the file are required, which is normally located in
a protected subdirectory. These has to be permitted, even though it might not be
required by the actual performed function.

(LABEL|L):<label> <label>={[a-zA-Z-_0-9]{1,n} (n<30, if possible)}
User defined alias, which should be unique. Could be used for any addressing
means.
.

(MAC|M):<MAC-address>
The MAC address, which has basically similar semantically meaning due to unique-
ness as the UUID.

Within the scope of ctys, it is widely assumed - even though not really prerequired
- that the UUIDs and MAC-Addresses are manual assigned statically, this could be
algorithmic too. The dynamic assignment by VMs would lead to partial difficulties
when static caches are used.

160 CHAPTER 15. ADDRESS SYNTAX

<mconf-filename> The filename of the configuration file without the path-prefix.

<mconf-filename-path> The complete filepathname of the configuration file.

<mconf-path> The pathname prefix of the configuration file.

(PATHNAME|PNAME|P):<mconf-path> When a VM has to be started, the
<pathname> to it’s configuration file has to be known. Therefore the <pathname>
is defined. The pathname is the full qualified name within the callers namescope.
SO in case of UNIX it requires a leading ’/’.

<physical-access-point>:=<machine-address>[:<access-port>] The physical
termination point as the lowest element of the execution stack. This is the first
entity to be contacted from the caller’s site, normally by simple network access.

<target-application-entity> The full path of the stacked execution stack, address-
ing the execution path from the caller’s machine to the terminating entity to be
executed. This particularly includes any involved PM, and VM, as well as the final
executable. Thus the full scope of actions to be performed in order to start the
"On-The-Top" executable is contained.

(TCP|T):<tcp/ip-address> The TCP/IP address is assumed by ctys to assigned in
fixed relation to a unique MAC-Address.

(UUID|U):<uuid> The well known UUID, which should be unique. But might not,
at least due to inline backups, sharing same UUID as the original. Therefore the
parameter FIRST, LAST, ALL is supported, due to the fact, that backup files
frequently will be assigned a name extension, which places them in alphabetical
search-order behind the original. So, when using UUID as unique identifier, a
backup will be ignored when FIRST is used.

Anyhow, cross-over ambiguity for different VMs has to be managed by the user.

<virtual-access-point>:=<machine-address>[:<access-port>] The virtual ter-
mination point as an element of the execution stack. The stack-level is at least one
above the bottom This stack element could be accessed either by it’s operating
hypervisor, or by native access to the hosted OS.

15.4 Stack Addresses

The stack address is a logical collection of VMs, including an eventually basic founding
PM, which are in a vertical dependency. The dependency results from the inherent
nested physical execution dependency of each upper-peer from it’s close underlying
peer. Therefore the stack addresses are syntactically close toGROUPS with additional
specific constraints, controlling execution dependency and locality. Particularly the
addressing of a VM within an upper layer of a stack could be smartly described by
several means of existing path addresses schemas. Within the UnifiedSessionsManager
a canonical form is defined for internal processing(Section 13.3.4 ‘Stacks as Vertical-
Subgroups’ on page 123), which is available at the user interface too. Additional
specific syntactical views are implemented in order to ease an intuitive usage. The
following section depicts a formal meta-syntax as a preview of the final ASN.1 based
definition. A stack address has the syntax as depicted in Figure˜15.5.

15.5. GROUP RESOLUTION 161

<stack-address>:=<access-point-list>

<access-point-list>:={
<physical-access-point>
|<virtual-access-point-path-list>

}

<virtual-access-point-path-list>:={

\begin{center}\begin{tabular}{l}
<empty> \\
<virtual-access-point> \\
\end{tabular}\end{center}

[’.’<virtual-access-point-path-list>]

\begin{center}\begin{tabular}{l}
[[’,’]<virtual-access-point-path-list>] \\
\end{tabular}\end{center}

}

Figure 15.5: Stack-Address

A stack can basically contain wildcards and simple regexpr for the various levels, groups
of entities within one level could be provided basically to. And of course any MACRO
based string-replacement is applicable. But for the following reasons the following
features are shifted to a later version:

Wildcards: An erroneous user-provided wildcard could easily expand to several hun-
dred VMs, which might be not the original intention. Even more worst, due to the
detached background operation on remote machines, this can not easily be stopped,
almost just by reboot of the execution target and probably any additional involved
machine. Which, yes, might take some time, due to the booting VMs.

Level-Groups/Sets: Due to several higher priorities this version supports explicitly
addressed entries only.

15.5 Group Resolution

The GROUPS objects are a concatination of <machine-addresses> and nested GROUPS
including specific context options.

<group-address>:= (
[<machine-addresses>[’(’ <machine-options> ’)’[’,’]]{0,n}]
[<group-address>[’(’ <group-options> ’)’[’,’]]{0,n}]

)[’(’<group-options>’)’]

Figure 15.6: Group-Address

Groups are valid replacements of any addressed object, such as a HOSTs. Groups can
contain in addition to a simple set of hostnames a list of entities with context specific

162 CHAPTER 15. ADDRESS SYNTAX

parameters and include other groups in a nested manner. Each set of superposed op-
tions is permutated with the new included set.

The resolution of group names is processed by a search path algorithm based on the
variable
, CTYS_GROUPS_PATH ,which has the same syntax as the PATH variable. The
search algorithm is a first-wins filename match of a preconfigured set. Nested includes
are resolved with a first-win algorithm beginning at the current position.

In addition to simple names an absolute or relative pathname for a group file could be
used. For common addressing as the path-seperator a ’.’ could be used. In case of a
’.’ the user has to be aware of possible ambiguity, when file extensions are used. The
address resolution works on first-match-wins base.

This allows for example the definition of arbitrary categories, such as server, client,
desktop, db, and scan. Here are some examples for free definitions of categories based
on simple subdirectories to search paths. The level of structuring into subdirectories is
not limited.

server/* A list of single servers with stored specific call parameters. Server is used
here as a synonym for a backend process. Which could be either a PM or a VM,
the characteristics is the inclusion of the backend process only.

client/* A list of single clients with stored specific call parameters. This is meant as
the user front end only, which could be a CONNECTIONFORWARDING. The user
can define this category also as a complete client machine including the backend
and frontend, which is a complete client for a service.

desktop/* A composition of combined clients and servers for specific tasks. This
could be specific desktops for office-applications, systems administration, software-
development, industrial applications, test environments. Either new entries could
be created, or existing groups could be combined by inclusion.

db/* Multiple sets of lists of targets to be scanned into specific caching databases. This
could be used for a working set as well as for different views of sets of machines.

scan/* A list of items to be scanned by tools for access validation and check of opera-
tional mode. Therefore this entities should contain basic parameters onyl, such as
machine specific remote access permissions type.

REMARK: The group feature requires a configured SSO, either by SSH-Keys or Ker-
beros when the parallel or async mode is choosen, which is the default mode. This is
required due to the parallel-intermixed password request, which fails frequently.

For additional information on groups refer to "GroupTargets" and "ctys-groups" .

The GROUPS objects are a concatination of <machine-addresses> and nested GROUPS
including specific context options. The end of the command with it’s specific option
should be marked by the common standard with a double column ’–’.

15.5. GROUP RESOLUTION 163

ctys -a <action> -- ’(<glob-opts>)’ <group>’(’<group-opts>’)’

=> The expansion of contained hosts results to:

...
<host0>’(<host-opts> <glob-opts> <group-opts>’)’
<host1>’(<host-opts> <glob-opts> <group-opts>’)’
...

=> The expansion of contained nested groups results to:

...
<group-member0>’(<glob-opts>)’(’<group-opts>’)’
<group-member1>’(<glob-opts>)’(’<group-opts>’)’
...

Figure 15.7: Groups of Stack-Addresses

The context options are applied succesively, thus are ’no-real-context’ options, much
more a successive superposition. More worst, the GROUP is a set, thus the members
of a group are reordered for display and execution purposes frequently. So the context
options are - in most practical cases - a required minimum for the attached entity.
.

164 CHAPTER 15. ADDRESS SYNTAX

15.6 ctys-help-on

SYNTAX

<ctys-command>

-H <help-option>

<help-option>:=
(man|html|pdf)][=((1-9)|<help-on-item>[,<help-on-item-list>])

| (path|list|listall)
| funcList=<any-function>][@<module-name>[@...]][,<any-function>...]
| funcListMod=<any-function>][@<module-name>[@...]][,<any-function>...]
| funcHead=<any-function>][@<module-name>[@...]][,<any-function>...]
| _ONLINEHELP_
| _HELP_

)

DESCRIPTION

The -H option is the common generic option of all tools for the display of online help.

The default is the display of man pages within a commandline terminal. This could
be any valid document within the search list defined by the variable MANPATH. The
output format could be optionally specified as PDF and HTML documents.

This tool is also used within menu entries of the XDG desktop of Freedesktop.org for
graphical display of online help. Therefore the current version provides the simple
HTML lists doc.html for the DOC-Package, and the base.html file for the BASE-
Package.

REMARK:
For the -H option of the call ’ctys -H man’ and ’ctys-vhost -H man’ the man parameter
is mandatory. In all other cases the call ’<any-other-ctys> -H’ searches for ’man’ output
by default within MANPATH.

. OPTIONS

The following suboptions and parameters could be applied:

-H path
Displays current document and man path.

-H list
Lists available online documents and manpages.

-H listall
Lists available online documents and manpages including the documents available
by MANPATH.

15.6. CTYS-HELP-ON 165

-H (man|html|pdf)[=([1-9]|[<help-on-item-list>])
Displays the requested information with one of the formats man, pdf, or html.
The following viewers are preconfigured as shell variables within the configuration
files and can be adapted as required:

CTYS_MANVIEWER=man
CTYS_PDFVIEWER=(acroread else kpdf else gpdf)
CTYS_HTMLVIEWER=(konqueror else firefox)

Default ismanpage for the current process with man 1 Additional constraints
could be applied such as another man-section or a filename, which could be either
literally matching or a string to be expanded. In case of expansion the first match
is taken.

-H funcList[=[<any-function>][@<module-name>[@...]]]
List of function names, sorted by function names. In addition the file names and
line numbers are displayed too.

-H funcListMod[=[<any-function>][@<module-name>[@...]]]
List of function names, sorted by file names. In addition the file names and line
numbers are displayed too.

-H funcHead[=[<any-function>][@<module-name>[@...]]]
Displays the contents of function headers, sorted by file names. The following
constraints could be applied:
• <any-function>: If given <any-function> than only this is displayed.
• <module-name>: If given <module-name>, than the functions contained within
this module only are displayed.

-H (_ONLINEHELP_|_HELP_)
Displays the predefined online help for the installed package.

. EXAMPLES

<ctys-command> -H (_ONLINEHELP_|_HELP_)
Displays the predefined online help for the installed package.

<ctys-command> -H html=base
Displays a summary of links for all documents contained in the BASE

package.
<ctys-command> -H html=doc

Displays the extended online help as contained in the DOC package.
<ctys-command> -H list

Lists available online documents and manpages.
<ctys-command> -H ctys

Displays the manpage for ctys with man.
<ctys-command> -H man=ctys

Displays the manpage for ctys with man.
<ctys-command> -H html=ctys

Displays the manpage for ctys with CTYS_HTMLVIEWER, by default
firefox or konqueror.

<ctys-command> -H pdf=ctys
Displays the manpage for ctys with CTYS_PDFVIEWER, by default kpdf,

gpdf, or acroread.

166 CHAPTER 15. ADDRESS SYNTAX

<ctys-command> -H pdf=howto
Displays the ctys-howto-online.pdf, which is displayed in alphabetical order

before ctys-howto-print.pdf.
<ctys-command> -H pdf=howto-print

Displays the ctys-howto-print.pdf, which is the first appropriate match.
<ctys-command> -H pdf=command-ref

Displays the ctys-command-reference.pdf.
<ctys-command> -H html=CLI,X11,VNC,VMW

Displays the manpage for ctys-CLI, ctys-X11, ctys-VNC and ctys-VNM
with
CTYS_HTMLVIEWER, by default firefox or konqueror. For incomplete
names a search with find is utilized for name expansion.

<ctys-command> -H html=ctys-extractARPlst,extractMAClst
Displays the manpage for ctys-extractARPlst and ctys-extractARPlst

with CTYS_HTMLVIEWER, by default firefox or konqueror. For incom-
plete names a search with find is utilized for name expansion.

Part IV

Appendices

167

Chapter 16

Current Loaded Plugins

This section enumerates the current loaded static libraries and the dynamic loaded
plugins. Which will be partly detected automaticaly and loaded as predefined or
On-Demand.
The following list is generated with the call:

"ctys -T all -v"
REMARK: For limited environents this could produce errors due to memory

exhaustion. The error messages ar not obvious!!!

--

UnifiedSessionsManager Copyright (C) 2007, 2008, 2010 Arno-Can Uestuensoez

This program comes with ABSOLUTELY NO WARRANTY; for details
refer to provided documentation.
This is free software, and you are welcome to redistribute it
under certain conditions. For details refer to "GNU General Public
License - version 3" <http://www.gnu.org/licenses/>.

--
PROJECT = Unified Sessions Manager
--
CALLFULLNAME = Commutate To Your Session
CALLSHORTCUT = ctys

AUTHOR = Arno-Can Uestuensoez - unifiedsessionsmanager@protonmail.com
MAINTAINER = Arno-Can Uestuensoez - unifiedsessionsmanager@protonmail.com
VERSION = 01_10_011
DATE = 2010.03.18

LOC = 117540 CodeLines
LOC-BARE = 59063 BareCodeLines (no comments and empty lines)
LOD = 0 DocLines, include LaTeX-sources

TARGET_OS = Linux: CentOS/RHEL, Fedora, ScientificLinux,
debian, Ubuntu,
(gentoo,) mandriva,
(knoppix,) (dsl,)

169

170 CHAPTER 16. CURRENT LOADED PLUGINS

SuSE/openSUSE
BSD: OpenBSD, FreeBSD
Solaris: Solaris-10, OpenSolaris
Windows: (WNT/Cygwin), (W2K/Cygwin), (WXP/Cygwin),

(W2Kx/Cygwin)

TARGET_VM = KVM, (OpenVZ), QEMU, (VirtualBox,) VMware, Xen
TARGET_WM = fvwm, Gnome, (KDE,) X11

GUEST_OS = ANY(some with limited native-acces support)
--
COPYRIGHT = Arno-Can Uestuensoez - unifiedsessionsmanager@protonmail.com
LICENCE = GPL3
--
EXECUTING HOST = ws2.soho
--
LIBRARIES(static-loaded - generic):

Nr Library Version
--
00 bootstrap.01.01.004.sh 01.10.010
01 base.sh 01.07.001b01
02 libManager.sh 01.02.002c01
03 cli.sh 01.07.001b06
04 misc.sh 01.06.001a12
05 security.sh 01.06.001a05
06 help.sh 01.10.002
07 geometry.sh 01.07.001b06
08 wmctrlEncapsulation.sh 01.07.001b06
09 groups.sh 01.11.001
10 network.sh 01.11.001

PLUGINS(dynamic-loaded - ctys specific):

Nr Plugin Version
--

00 CORE/CACHE.sh 01.07.001b01
01 CORE/CLI.sh 01.07.001b06
02 CORE/COMMON.sh 01.02.002c01
03 CORE/CONFIG/hook.sh 01.06.001a14
04 CORE/DIGGER/hook.sh 01.07.001b06
05 CORE/DIGGER/list.sh 01.02.001b01
06 CORE/ENV.sh 01.02.002c01
07 CORE/EXEC.sh 01.06.001a15
08 CORE/GENERIC.sh 01.10.011
09 CORE/HELP.sh 01.02.002c01
10 CORE/LABELS.sh 01.07.001b05
11 CORE/STACKER/hook.sh 01.07.001b06
12 CORE/VMs.sh 01.02.002c01

171

13 GENERIC/hook.sh 01.02.001b01
14 GENERIC/LIST/list.sh 01.10.008
15 GENERIC/ENUMERATE/enumerate.sh 01.02.001b01

16 HOSTs/CLI/hook.sh 01.06.001a09
17 HOSTs/CLI/session.sh 01.01.001a01
18 HOSTs/CLI/list.sh 01.10.008
19 HOSTs/CLI/info.sh 01.02.001b01
20 HOSTs/VNC/hook.sh 01.02.001b01
21 HOSTs/VNC/session.sh 01.06.001a15
22 HOSTs/VNC/list.sh 01.07.001b05
23 HOSTs/VNC/info.sh 01.02.001b01
24 HOSTs/X11/hook.sh 01.06.001a09
25 HOSTs/X11/session.sh 01.01.001a01
26 HOSTs/X11/list.sh 01.01.001a00
27 HOSTs/X11/info.sh 01.02.001b01

28 VMs/QEMU/hook.sh 01.10.008
29 VMs/QEMU/config.sh 01.01.001a01pre
30 VMs/QEMU/session.sh 01.10.008
31 VMs/QEMU/enumerate.sh 01.10.008
32 VMs/QEMU/list.sh 01.10.008
33 VMs/QEMU/info.sh 01.01.001a00pre
34 VMs/VMW/hook.sh 01.10.009
35 VMs/VMW/session.sh 01.10.009
36 VMs/VMW/enumerate.sh 01.06.001a09
37 VMs/VMW/list.sh 01.10.009
38 VMs/VMW/info.sh 01.02.001b01
39 VMs/XEN/hook.sh 01.10.008
40 VMs/XEN/config.sh 01.01.001a01
41 VMs/XEN/session.sh 01.07.001b06
42 VMs/XEN/enumerate.sh 01.01.001a01
43 VMs/XEN/list.sh 01.10.008
44 VMs/XEN/info.sh 01.01.001a00

45 PMs/PM/hook.sh 01.10.008
46 PMs/PM/session.sh 01.01.001a00
47 PMs/PM/enumerate.sh 01.01.001a01
48 PMs/PM/list.sh 01.10.008
49 PMs/PM/info.sh 01.01.001a00

CTYS-INTERNAL-SUBCALLS:

Nr Component Version
--
00 ctys 01_10_011
01 ctys-callVncserver.sh 01_10_011
02 ctys-callVncviewer.sh 01_10_011
03 ctys-createConfQEMU.sh 01_10_011

172 CHAPTER 16. CURRENT LOADED PLUGINS

04 ctys-distribute.sh 01_10_011
05 ctys-dnsutil.sh 01_10_011
06 ctys-extractARPlst.sh 01_10_011
07 ctys-extractMAClst.sh 01_10_011
08 ctys-genmconf.sh 01_10_011
09 ctys-groups.sh 01_10_011
10 ctys-getMasterPid.sh 01_10_011
11 ctys-install.sh 01_10_009
12 ctys-install1.sh 01_10_009
13 ctys-macros.sh 01_10_011
14 ctys-macmap.sh 01_10_011
15 ctys-plugins.sh 01_10_011
16 ctys-vnetctl.sh 01_10_011
17 ctys-smbutil.sh 01_10_011
18 ctys-vdbgen.sh 01_10_011
19 ctys-vhost.sh 01_10_011
20 ctys.sh 01_10_011
21 ctys-wakeup.sh 01_10_011
22 ctys-xen-network-bridge.sh 01_10_011

Helpers:

00 getCPUinfo.sh 01_10_011
01 getFSinfo.sh 01_10_011
02 getHDDinfo.sh 01_10_011
03 getMEMinfo.sh 01_10_011
04 getPerfIDX.sh 01_10_011
05 getVMinfo.sh 01_10_011

Tiny-Helpers:

00 getCurArch.sh OK
01 getCurCTYSRel.sh OK
02 getCurDistribution.sh OK
03 getCurGID.sh OK
04 getCurOS.sh OK
05 getCurOSRel.sh OK
06 getCurRelease.sh OK
07 getSolarisUUID.sh OK
08 pathlist.sh OK

--
OPTIONAL/MANDATORY PREREQUISITES:

bash:GNU bash, version 3.2.25(1)-release (x86_64-redhat-linux-gnu)

SSH:OpenSSH_4.3p2, OpenSSL 0.9.8e-fips-rhel5 01 Jul 2008

VNC:VNC Viewer Free Edition 4.1.2 for X - built Mar 24 2009 19:52:30

173

wmctrl:wmctrl 1.07

--
CURRENT ARG-MEM-USAGE:

ArgList(bytes):"env|wc -c" => 3284
ArgList(bytes):"set|wc -c" => 810677

Chapter 17

Miscellaneous

17.1 Basic EXEC principle

The basic execution principle of ctys is first to analyse the given options and build
up an call array. Therefore several distinctions have to be made as resulting from
permutation and superposing of the expanded CLI arguments. These array is finally
executed in sets dependent from multiple criteria. Some examples are:

• Grouping of common sessions for each desktop, due to reliability and addressing
gaps when shifting windows between desktops.

• Grouping of sessions for each remote server, but only if not ConnectionForward
is choosen, because the current OpenSSH release does not support MuxDemux
of multiple XSessions with different Displays.

• Splitting of Remote Server and Local Client execution of ctys, for VMs even
though the VM-configuration is available on the server site only, which requires
a remote component of ctys to be executed.

• ...and so on.

The implementation of ctys is pure bash with usage of the common shell compo-
nents such as awk and sed. The whole design is based on unique set of sources
which will be executed as the local initial call and client starter part as well as
the remote server execution script. In case of DISPLAYFORWARDING the local
component just initiates the remote co-allocated execution of Client and Server
component. For the case of LOCALONLY both will be locally executed, thus the
ctys acts locally as initial caller, server starter and client starter script.

To assure consistency and compatibility the remote and local versions will be
checked and the execution is proceeded only in case of an match of both versions.

17.2 PATH

First of all, this is normally just required when handling different versions during
development. This is particularly true, when during development a version is ex-
ecuted which is not contained within the standard PATH. This is particularly to
be recognized, when executing the remote component which relies on the PATH
mechanism too. Therefore the two environment variables are defined:

R_PATH: Replaces path for remote execution.
L_PATH: Replaces path for local execution.

175

176 CHAPTER 17. MISCELLANEOUS

The local component L_PATH is required for local execution too, because the
following subcalls of ctys will be executed based on PATH mechanism, which is
most often different to initial path-prefixed test-call. For example this is for calling
a test version for starting a local client and remote server from a test path without
changing PATH:

V=01_01_007a01;\
export R_PATH=/mntbase/ctys/src/ctys.\$V/bin:\$PATH;\
export L_PATH=\$R_PATH;\
ctys.\$V/bin/ctys -t vmw \

-a create=b:\$HOME/vmware/dir2\%\$HOME/vmware/dir3,\
l:"GRP01-openbsd-4.0-001",REUSE

-g 800x400+100+300:3 \
-L CF \
-- ’(-d 99)’ app2

The same for common user with standard install will be:

ctys -t vmw \
-a create=\

base:\$HOME/vmware/dir2\%\$HOME/vmware/dir3\
,label:"GRP01-openbsd-4.0-001"\
,REUSE

-g 800x400+100+300:3 \
-L CF \
app2

17.3 Configuration files

The configuration of ctys is performed in 4 steps, first has highest priority.
(a) Environment Variable If an environment variable is set, it dominates other

settings and it’s value is kept.
(b) $HOME/.ctys/ctys.conf Config-File sourced: $HOME/.ctys/ctys.conf
(c) <install dir>/conf/ctys.conf Config-File sourced: <install dir>/conf/ctys.conf
(d) Embedded defaults in ctys.

17.4 Media Access Control(MAC) Addresses - VM-NICs

.

.
This is just an short extract of repetition for understanding WHY a VMs MAC-
address should begin with either ’2’, or ’6’, or ’A’, or ’E’ - shortly [26AE]. The
knowledge of this is an mandatory and essential building block, when assigning
addresses to NICs - a.k.a. VNICs - of VMs for participation of the VM on LAN
communications. So will be given thoroughly here.
First of all - this item is described excellently in the book of Charles E. Spurgeon
at pg. 42. Application hints with general visual VM-Networking explanation and
a short sum-up for application of MAC-Addresses on VMs are available at the
Xen-Wiki . The standards are available at ieee.org .

17.4. MEDIA ACCESS CONTROL(MAC) ADDRESSES - VM-NICS 177

The basis for this numbering are the so called DIX and IEEE 802.3 standards. The
following items give a short extract:
• Multicast-bit - by DIX and IEEE 802.3 The Ethernet frames use the first bit
of destination address for distinction between:
– an explicitly addressed single target - a.k.a. physical or unicast address.
– a group of recipients with an logical address - a.k.a. multicast address
– The syntax is given by most significant bit in Network Order:

0: unicast
1: multicast

Which is ’X’ for frames bit-stream:
Xnnn mmmm rrrr ssss

• Locally and Globally Administered Addresses - IEEE 802.3 This is defined for
IEEE 802.3 only. This bit defines the namespace of (to be cared of!) unambi-
guity for the given address due to it’s administrators area of responsibility.
– globally administered addresses To be used by public - so globally coordi-
nated - access, which has to prevent anyone from buying two NICs with the
same MAC-Address.

– locally administered addresses Could be used according to policies of locally
responsible administrators. This is particularly required for management of
VMs, when these should be used in bridged mode, which is a transparently
complete host network access as for any physical host.

– The syntax is given by second significant bit in Network Order:
0: globally administered
1: locally administered
Which is ’Y’ for frames bit-stream:
nYnn mmmm rrrr ssss

• Distinction of Network-Order and Representation-Order The given control bits
from the network standards are related to networking, thus address positions in
network streams as bit-representation. But the MAC-Address - 48bit - are writ-
ten as 6 Octets of hexadecimal nibbles seperated by colons - for human readabil-
ity. The difference of both for the actual "bit-order" arises from the "different
logical handling units" for the actual set of bits. Whereas the Network-Order
assumes a bit as unit, the Representation Order assumes nibbles grouped to
octets as handling units. So the definition of both units are:
– Network-Order: bit as unit, and a constant bit-stream indexed incrementally
beginning with the first bit

– Representation-Order: nibble as unit, grouped to octets as least-significant
nibble - containing the least significant bits of a bit stream - first

– Thus the resulting mapping is given by:
∗ Network-Order:

nnnn mmmm rrrr ssss
N M R S

∗ Representation-Order, where additionally the bit-order within the nibble
is swapped by definition:
MN:SR:...
with N from n0-n1-n2-n3 to N3-N2-N1-N0.
Network: 0001 = 0x1
Representation: 1000 = 0xF

178 CHAPTER 17. MISCELLANEOUS

∗ Assuming that for a VM only addresses of following types should be used
or to say ’are valid’:
unicast + locally administered

This results to :

01nn mmmm rrrr ssss ...

...which is represented as:

M{nn10}:SR:...

...so has even values only beginning with 2 - N=2+n*4:

{nn10}={2,6,10,14}={0x2,0x6,0xA,0xE}=[26AE]

...finally referring to the guide on "XenNetworking-Wiki":

"aA:..." is a valid address, whereas "aB:...." is not.

Mentioning this for completeness - any value of a MAC-Address, where
the second nibble of the leftmost octet has one of the values [26AE], is
valid.
So, ...yes, no rule without exception. When dealing with commercial prod-
ucts, free or not, any addressing-pattern could be predefined for manual
and generic MAC-Address assignment within a valid "private" range of
the products supplier. This is the case when the first 3 octets of the
MAC-Address are defined to be fixed - which is e.g. the suppliers globally
assigned prefix - whereas any numbering range could be defined within the
following 3 octets.
The given convention should be recognized, because it might be checked by
any undisclosed hardcoded piece of code. For details refer to the specific
manuals when required. "ctys" supports the display of MAC-Addresses
as it does UUIDs by action ENUMERATE. This could be used to check
uniqueness and might be supported as a ready-to-use MACRO.

Chapter 18

LICENSES

Additionally a seperate document including all licenses is contained within the
package.

ctys-Licenses-01.11-print.pdf

18.1 CCL-3.0 With Attributes

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

1. Definitions

1. "Adaptation" means a work based upon the Work, or upon the Work
and other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that
constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the
synchronization of the Work in timed-relation with a moving image
("synching") will be considered an Adaptation for the purpose of
this License.

2. "Collection" means a collection of literary or artistic works,

179

180 CHAPTER 18. LICENSES

such as encyclopedias and anthologies, or performances, phonograms
or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations,
in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting
separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

3. "Distribute" means to make available to the public the original
and copies of the Work through sale or other transfer of ownership.

4. "Licensor" means the individual, individuals, entity or entities
that offer(s) the Work under the terms of this License.

5. "Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who created
the Work or if no individual or entity can be identified, the
publisher; and in addition (i) in the case of a performance the
actors, singers, musicians, dancers, and other persons who act,
sing, deliver, declaim, play in, interpret or otherwise perform
literary or artistic works or expressions of folklore; (ii) in the
case of a phonogram the producer being the person or legal entity
who first fixes the sounds of a performance or other sounds; and,
(iii) in the case of broadcasts, the organization that transmits
the broadcast.

6. "Work" means the literary and/or artistic work offered under the
terms of this License including without limitation any production
in the literary, scientific and artistic domain, whatever may be
the mode or form of its expression including digital form, such as
a book, pamphlet and other writing; a lecture, address, sermon or
other work of the same nature; a dramatic or dramatico-musical
work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which
are assimilated works expressed by a process analogous to
cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which
are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration, map, plan,
sketch or three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus
performer to the extent it is not otherwise considered a literary
or artistic work.

7. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License

18.1. CCL-3.0 WITH ATTRIBUTES 181

with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a
previous violation.

8. "Publicly Perform" means to perform public recitations of the
Work and to communicate to the public those public recitations, by
any means or process, including by wire or wireless means or public
digital performances; to make available to the public Works in such
a way that members of the public may access these Works from a
place and at a place individually chosen by them; to perform the
Work to the public by any means or process and the communication to
the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any
means including signs, sounds or images.

9. "Reproduce" means to make copies of the Work by any means
including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including
storage of a protected performance or phonogram in digital form or
other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

1. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

2. to Distribute and Publicly Perform the Work including as
incorporated in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by
Licensor are hereby reserved, including but not limited to the rights
set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

1. You may Distribute or Publicly Perform the Work only under the
terms of this License. You must include a copy of, or the Uniform

182 CHAPTER 18. LICENSES

Resource Identifier (URI) for, this License with every copy of the
Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this
License or the ability of the recipient of the Work to exercise the
rights granted to that recipient under the terms of the
License. You may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of
warranties with every copy of the Work You Distribute or Publicly
Perform. When You Distribute or Publicly Perform the Work, You may
not impose any effective technological measures on the Work that
restrict the ability of a recipient of the Work from You to
exercise the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart
from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor
You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(c), as requested.

2. You may not exercise any of the rights granted to You in Section
3 above in any manner that is primarily intended for or directed
toward commercial advantage or private monetary compensation. The
exchange of the Work for other copyrighted works by means of
digital file-sharing or otherwise shall not be considered to be
intended for or directed toward commercial advantage or private
monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

3. If You Distribute, or Publicly Perform the Work or Collections,
You must, unless a request has been made pursuant to Section 4(a),
keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name
of the Original Author (or pseudonym, if applicable) if supplied,
and/or if the Original Author and/or Licensor designate another
party or parties (e.g., a sponsor institute, publishing entity,
journal) for attribution ("Attribution Parties") in Licensor’s
copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if
supplied; (iii) to the extent reasonably practicable, the URI, if
any, that Licensor specifies to be associated with the Work, unless
such URI does not refer to the copyright notice or licensing
information for the Work. The credit required by this Section 4(c)
may be implemented in any reasonable manner; provided, however,
that in the case of a Collection, at a minimum such credit will
appear, if a credit for all contributing authors of Collection
appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For
the avoidance of doubt, You may only use the credit required by
this Section for the purpose of attribution in the manner set out
above and, by exercising Your rights under this License, You may
not implicitly or explicitly assert or imply any connection with,

18.1. CCL-3.0 WITH ATTRIBUTES 183

sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the
Original Author, Licensor and/or Attribution Parties.

4.

For the avoidance of doubt:

1. Non-waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect
such royalties for any exercise by You of the rights granted
under this License;

2. Waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme can be waived,
the Licensor reserves the exclusive right to collect such
royalties for any exercise by You of the rights granted under
this License if Your exercise of such rights is for a purpose
or use which is otherwise than noncommercial as permitted
under Section 4(b) and otherwise waives the right to collect
royalties through any statutory or compulsory licensing
scheme; and,

3. Voluntary License Schemes. The Licensor reserves the right
to collect royalties, whether individually or, in the event
that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society,
from any exercise by You of the rights granted under this
License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b).

5. Except as otherwise agreed in writing by the Licensor or as may
be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part
of any Collections, You must not distort, mutilate, modify or take
other derogatory action in relation to the Work which would be
prejudicial to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE,
MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO

184 CHAPTER 18. LICENSES

NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY
NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

1. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Collections from
You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License. 2. Subject to the above
terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous

1. Each time You Distribute or Publicly Perform the Work or a
Collection, the Licensor offers to the recipient a license to the
Work on the same terms and conditions as the license granted to You
under this License.

2. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such
provision shall be reformed to the minimum extent necessary to make
such provision valid and enforceable.

3. No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or
consent.

4. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any

18.1. CCL-3.0 WITH ATTRIBUTES 185

additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written
agreement of the Licensor and You.

5. The rights granted under, and the subject matter referenced, in
this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised
on July 24, 1971). These rights and subject matter take effect in
the relevant jurisdiction in which the License terms are sought to
be enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under
applicable copyright law includes additional rights not granted
under this License, such additional rights are deemed to be
included in the License; this License is not intended to restrict
the license of any rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Commons
will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general,
special, incidental or consequential damages arising in connection
to this license. Notwithstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of
Licensor.

Except for the limited purpose of indicating to the public that
the Work is licensed under the CCPL, Creative Commons does not
authorize the use by either party of the trademark "Creative
Commons" or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons’
then-current trademark usage guidelines, as may be published on
its website or otherwise made available upon request from time to
time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Bibliography

Books

UNIX

[1] Juergen Gulbins: UNIX Version 7, bis System V.3, Springer-Verlag Berlin
Heidelberg; 1988; ISBN: 3-540-19248-4

[2] Maurice J. Bach: The Design Og The UNIX Operating System, Prentice
Hall, Inc.; 1986; ISBN: 0-13-201757-1

[3] Sebastian Hetze, Dirk Hohndel, Martin Mueller, Olaf Kirch: LINUX Anwen-
der Handbuch, LunetIX Softair; 1994; ISBN: 3-929764-03-2

[4] Rob Flickenger: LINUX SERVER HACKS, O’Reilly&Associates, Inc.; 2003;
ISBN: 0-596-00461-3

[5] Olaf Kirch: LINUX Network Administrator’s Guide, O’Reilly&Associates,
Inc.; 1995; ISBN: 0-56592-087-2

[6] Daniel P. Bovet, Marco Cesati: Understanding the LINUX KERNEL,
O’Reilly&Associates, Inc.; 2003; ISBN: 0-596-00002-2

[7] Daniel P. Bovet, Marco Cesati: Understanding the LINUX KERNEL(2nd.
Ed.), O’Reilly&Associates, Inc.; 2003; ISBN: 0-596-00213-0

[8] Wolfgang Mauerer: Linux Kernelarchitektur - Konzepte, Strukturen und
Algorithmen von Kernel 2.6, Carl Hanser Verlag Muenchen-Wien; 2004;
ISBN: 3-446-22566-8

[9] Alessandro Rubini: LINUX Device Drivers, O’Reilly&Associates, Inc.; 1998;
ISBN: 1-565592-292-1

[10] Alessandro Rubini, Jonathan Corbet: LINUX Device Drivers(2nd. Ed.),
O’Reilly&Associates, Inc.; 2001; ISBN: 0-596-00008-1

[11] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman: LINUX Device
Drivers(3nd. Ed.), O’Reilly&Associates, Inc.; 2005; ISBN: 0-596-00590-3

[12] Juergen Quade, Eve-Katharina Kunst: Linux-Treiber entwickeln,
dpunkt.verlag GmbH; 2004; ISBN: 3-89864-238-0

[13] Wehrle, Paehlke, Ritter, Mueller, Bechler: Linux Netzwerkarchitektur - De-
sign und Implementerung von Netzwerkprotokollen im Linux-Kern, Addison
Wesley, Inc.; 2002; ISBN: 3-8273-1509-3

[14] Brandon Palmer, Jose Nazario: Secure Architectures with OpenBSD, Addison
Wesley, Inc.; 2004; ISBN: 0-321-19366-0

[15] Michael W. Lucas: Absolute OpenBSD - UNIX for the Practical Paranoid,
No Starch Press, Inc.; 2003; ISBN: 1-886411-99-9

[16] Chris Tyler: FEDORA LINUX, O’Reilly&Associates, Inc.; 2006;
ISBN: 1-596-52682-2

[17] Benjamin Mako Hill, Jono Bacon, Corey Burger, Jonathan Jesse, Ivan
Krstic: The Official ubuntu Book, Pearson Education, Inc.; 2007;
ISBN: 0-13-243594-2

187

188 BIBLIOGRAPHY

[18] Jonathan Oxer, Kyle Rankin, Bill Childers: UBUNTU Hacks - Tips&Tools
for Exploring, Using, and Tuning Linux, O’Reilly&Associates, Inc.; 2006;
ISBN: 1-596-52720-9

[19] Tim SchÃ1
4
rmann: (K)Ubuntu - Installieren - Einrichten - Anwenden, Open

Source Press; 2006; ISBN: 3-937514-30-9
[20] Michael Urban, Brian Thiemann: FreeBSD 6 Unleashed, Sams Publishing,

Inc.; 2006; ISBN: 0-672-32875-5
[21] Marshall Kirk McKusick, George V. Neville-Neil: The Design and Imple-

mentation of the FreeBSD 6 Operating System, Addison Wesley, Inc.; 2005;
ISBN: 0-201-70245-2

Security

[22] Guenter Schaefer: Netzsicherheit - Algorithmische Grundlagen und Pro-
tokolle, dpunkt.verlag GmbH; 2003; ISBN: 3-89864-212-7

[23] Alexande Geschonneck: Computer Forensik - Systemeinbrueche erkennen, er-
mitteln, aufklaeren, dpunkt.verlag GmbH; 2004; ISBN: 3-89864-253-4

[24] Jonathan Hassel: RADIUS - Securing Public Access to Privaze Resources,
O’Reilly&Associates, Inc.; 2002; ISBN: 0-596-00322-6

[25] Jason Garman: Kerberos - The Definitive Guide, O’Reilly&Associates, Inc.;
2003; ISBN: 1-596-00403-6

[26] Daniel J. Barret, Richard E. Silverman & Robert G.Byrnes: SSH The
Secure Shell - The Definitive Guide, O’Reilly&Associates, Inc.; 2005;
ISBN: 1-596-00895-3

[27] John Viega, Matt Messier & Pravir Chandra: Network Security with
OpenSSL, O’Reilly&Associates, Inc.; 2002; ISBN: 0-596-00270-X

[28] Jonathan Hassel: RADIUS, O’Reilly&Associates, Inc.; 2002;
ISBN: 0-596-00322-6

[29] Gerald Carter: LDAP - System Administration, O’Reilly&Associates, Inc.;
2003; ISBN: 1-596592-491-6

[30] Matthias Reinwarth, Klaus Schmidt: Verzeichnisdienste - Telekommunika-
tion Aktuell, VDE Verlag GmbH; 1999; ISBN: 3-8007-2373-5

[31] Dieter Kluenter, Jochen Laser: LDAP verstehen, OpenLDAP einsetzen,
dpunkt.verlag GmbH; 2003; ISBN: 3-89864-217-8

[32] Daniel J. Barret, Richard E. Silverman & Robert G.Byrnes: LINUX Security
Cookbook, O’Reilly&Associates, Inc.; 2003; ISBN: 1-565-00391-9

[33] Charlie Scott, Paul Wolfe & Mike Erwin: Virtual Private Networks,
O’Reilly&Associates, Inc.; 1999; ISBN: 1-565592-529-7

[34] Bill McCarty: SELINUX - NSA’s Open Source Security Enhanced Linux,
O’Reilly&Associates, Inc.; 2004; ISBN: 1-565-007161-7

[35] Rober L. Ziegler: Linux Firewalls, New Riders Publishing, Inc.; 2000;
ISBN: 0-7357-0900-9

[36] D. Brent Chapman and Elisabeth D. Zwicky: Einrichten von Internet Fire-
walls, O’Reilly&Associates, Inc.; 1996; ISBN: 3-930673-31-2

[37] Wolfgang Barth: Das Firewall-Buch, Nicolaus Millin Verlag GmbH; 2004;
ISBN: 3-89990-128-2

[38] Joseph Kong: Designing BSD Rootkits - An Introduction to Kernel Hacking,
No Starch Press, Inc.; 2007; ISBN: 978-1-593271-142-8

BIBLIOGRAPHY 189

[39] Cyrus Peikari, Anton Chuvakin (Peter Klicman, Andreas Bildstein, Ger-
ald Richter): Kenne deinen Feind - Fortgeschrittene Sicherheitstechniken,
O’Reilly&Associates, Inc.; 2004; ISBN: 3-89721-376-1

[40] Ryan Russel et al.: Die mitp-Hacker-Bibel, mitp-Verlag/Bonn; 2002;
ISBN: 3-8266-0826-3

[41] Wallace Wang: Steal This Computer Book 4.0 - What They Won’t Tell You
About The Internet, No Starch Press, Inc.; 2007; ISBN: 1-59327-105-0

[42] Johnny Long: Google Hacking - For Penetration Testers, Syngress Publish-
ing, Inc.; 2005; ISBN: 1-931836-36-1

[43] Thomas Bechtold, Peter Heinlein: Snort, Acid & Co. - Einbruchserkennung
mit Linux, Open Source Press; 2004; ISBN: 3-937514-01-3

[44] Syngress Autorenteam: Snort 2.0 Intrusion Detection, mitp-Verlag/Bonn;
2003; ISBN: 3-6266-1304-X

Networks

[45] Charles E. Spurgeon: Ethernet - The Definitive Guide, O’Reilly&Associates,
Inc.; 2000; ISBN: 1-56592-660-9

[46] Olaf Kirch: LINUX - Network Administrators Guide, O’Reilly&Associates,
Inc.; 1995; ISBN: 1-56592-087-2

[47] Hal Stern, Mike Eisler & Ricardo Labiaga: Managing NFS and NIS,
O’Reilly&Associates, Inc.; 2001; ISBN: 1-56592-510-6

[48] Paul Albitz & Cricket Liu: DNS and Bind, O’Reilly&Associates, Inc.; 2001;
ISBN: 1-596-00158-4

[49] James M. Kretchmar: Open Source Network Administration, Pearson Edu-
cation, Inc.; 2004; ISBN: 0-13-046210-1

[50] Douglas R. Mauro, Kevin J. Schmidt: Essential SNMP(1.nd Ed.,
O’Reilly&Associates, Inc.; 2001; ISBN: 0-596-00020-0

[51] Douglas R. Mauro, Kevin J. Schmidt: Essential SNMP(2.nd Ed.,
O’Reilly&Associates, Inc.; 2005; ISBN: 0-596-00840-6

[52] James D. Murray: Wimdows NT SNMP, O’Reilly&Associates, Inc.; 1998;
ISBN: 1-56592-338-3

[53] Marshall T. Rose: The Simple Book(2nd. Ed.), Prentice Hall, Inc.; 1996;
ISBN: 0-13-451659-1

[54] David Perkins, Evan McGinnis: Understanding SNMP MIBs, Prentice Hall,
Inc.; 1997; ISBN: 0-13-437708-7

[55] Mathias Hein, David Griffiths: SNMP Simple Network Management
Protocol Version 2, International Thomson Publishing GmbH; 1994;
ISBN: 3-929821-51-6

[56] Peter Erik Mellquist: SNMP++ An Object-Oriented Approach to Develop-
ing Network Management Applications, Hewlett-Packard(TM) Professional
Books; 1997; ISBN: 0-13-264607-2

[57] Marshall T. Rose: The Open Book - A Practical Perspective on OSI, Prentice
Hall, Inc.; 1990; ISBN: 0-13-643016-3

[58] Uyless Black: Network Management Standards(2nd.Ed.), McGraw-Hill, Inc.;
1994; ISBN: 0-07-005570-X

[59] Wolfgang Barth: NAGIOS - System and Network Monitoring, No Starch
Press, Inc.; 2006; ISBN: 1-59327-070-4

[60] Heinz-Gerd Hegering, Sebastian Abeck, Bernhard Neumair: Integriertes
Management vernetzter Systeme, dpunkt.verlag; 1999; ISBN: 3-932588-16-9

190 BIBLIOGRAPHY

[61] Walter Gora, Reinhard Speyerer: ASN.1 Abstract Syntax Notation
One(2nd.Ed.), DATACOM-Verlag; 1990; ISBN: 3-89238-023-6

[62] Klaus H. Stoettinger: Das OSI-Referenzmodell, DATACOM-Verlag; 1989;
ISBN: 3-89238-021-X

Embedded Systems

[63] Derek J. Hatley,Imtiaz A. Pirbhai: Strategien fuer die Echtzeit-
Programmierung, Carl Hanser Verlag Muenchen-Wien; 1988;
ISBN: 3-446-16288-7

[64] Edmund Jordan: Embedded Systeme mit Linux programmieren - GNU-
Softwaretools zur Programmierung ARM-basierender Systeme, Franzis Verlag
GmbH; 2004; ISBN: 3-7723-5599-4

[65] Michael Barr, Anthony Massa: Programming Embedded Systems(2nd.Ed.),
O’Reilly&Associates, Inc.; 2006; ISBN: 1-596-00983-6

[66] John Lombardo: Embedded Linux, New Riders Publishing; 2001;
ISBN: 0-7357-0998-X

[67] Craig Hollabaugh, Ph.D.: Embedded Linux - Hardware, Software, and Inter-
facing, Addison Wesley, Inc.; 2002; ISBN: 0-672-32226-9

[68] Bob Smith, John Hardin, Graham Phillips, and Bill Pierce:
LINUX APPLIANCE DESIGN - A Hands-On Guide to Building Linux Ap-
pliances, No Starch Press, Inc.; 2007; ISBN: 978-1-59327-140-4

[69] David E. Simon: An Embedded Software Primer, Addison Wesley, Inc.; 1999;
ISBN: 0-201-61569-X

[70] John Waldron: Introduction to RISC Assembly Language Programming, Ad-
dison Wesley, Inc.; 1999; ISBN: 0-201-39828-1

[71] Steve Furber: ARM System Architecture, Addison Wesley, Inc.; 1996;
ISBN: 0-201-40352-8

Online References

Obvious, but to be written due to German-Law:
"It should be recognized, that the given links within this and following sections
are solely owned by and are within the exclusive responsibility of their owners.
The intention to reference to that sites is neither to take ownership of their
work, nor to state commitment to any given statement on their sites. It is
much more to honour the work, and thank to the help, the author advanced
from by himself. Last but not least, the intention is to support a short cut for
the users of UnifiedSessionsManager to sources of required help."

OSs

[72] RedHat(TM) Enterprise Linux: http://www.redhat.com
[73] RedHat(TM) Enterprise Linux-Doc:

http://www.redhat.com/docs
[74] CentOS: http://www.centos.org
[75] CentOS-Doc: http://www.centos.org/docs
[76] Scientific Linux: http://www.scientificlinux.org
[77] Debian: http://www.debian.org

http://www.redhat.com
http://www.redhat.com/docs
http://www.centos.org
http://www.centos.org/docs
http://www.scientificlinux.org
http://www.debian.org

BIBLIOGRAPHY 191

[78] OpenSuSE: http://www.opensuse.org

[79] OpenBSD: http://www.openbsd.org
[80] OpenBSD-FAQ: http://www.openbsd.org/faq/index.html
[81] OpenBSD-PF: http://www.openbsd.org/faq/pf/index.html
[82] FreeBSD: http://www.freebsd.org
[83] NetBSD: http://www.netbsd.org

[84] uCLinux: http://www.uclinux.org
[85] Linux on ARM: http://www.linux-arm.com
[86] eCos: http://ecos.sourceware.org

Hypervisors/Emulators

kvm

[87] KVM: http://de.wikipadia.org/wiki/Kernel_based_Virtual_Machine

QEMU

[88] QEMU(TM): http://www.qemu.org
[89] QEMU-CPU support: http://fabrice.bellard.free.fr/qemu/status.html
[90] QEMU-User Manual:

http://fabrice.bellard.free.fr/qemu/qemu-doc.html
[91] QEMU-OS support: http://www.claunia.com/qemu
[92] QEMU-Debian: http://909ers.apl.washington.edu/ dushaw/ARM
[93] QEMU-Debian on an emulated ARM machine; Aurelien Jarno:

http://www.aurel32.net
[94] QEMU-Debian kernel and initrd for qemu-arm-versatile; Aurelien Jarno:

http://people.debian.org/ aurel32
[95] QEMU-Debian ARM Linux on QEMU; Brian Dushaw:

http://909ers.apl.washington.edu/ dushaw/ARM
[96] QEMU-Ubuntu-Installation/QemuEmulator:

http://help.ubuntu.com/community/Installation/QemuEmulator
[97] QEMU-Ubuntu-VMwarePlayerAndQemu:

http://wiki.ubuntu.com/VMwarePlayerAndQemu
[98] QEMU-OpenBSD: http://141.48.37.144/openbsd/qemu.html - Dag Leine In-

stitut fuer Physikalische Chemie, Martin Luther Universitaet Halle
[99] QEMU-NetBSD - Running NetBSD on emulated hardware:

http://www.netbsd.org/ports/emulators.html
[100] QEMU-OpenSolaris: http://www.opensolaris.org/os/project/qemu/host
[101] QEMU-OpenSolaris Networking:

http://www.opensolaris.org/os/project/qemu/Qemu_Networking
[102] QEMUlator: http://qemulator.createweb.de

http://www.opensuse.org
http://www.openbsd.org
http://www.openbsd.org/faq/index.html
http://www.openbsd.org/faq/pf/index.html
http://www.freebsd.org
http://www.netbsd.org
http://www.uclinux.org
http://www.linux-arm.com
http://ecos.sourceware.org
http://de.wikipadia.org/wiki/Kernel_based_Virtual_Machine
http://www.qemu.org
http://fabrice.bellard.free.fr/qemu/status.html
http://fabrice.bellard.free.fr/qemu/qemu-doc.html
http://www.claunia.com/qemu
http://909ers.apl.washington.edu/~dushaw/ARM
http://www.aurel32.net
http://people.debian.org/~aurel32
http://909ers.apl.washington.edu/~dushaw/ARM
http://help.ubuntu.com/community/Installation/QemuEmulator
http://wiki.ubuntu.com/VMwarePlayerAndQemu
http://141.48.37.144/openbsd/qemu.html
http://141.48.37.144/openbsd/qemu.html
http://www.netbsd.org/ports/emulators.html
http://www.opensolaris.org/os/project/qemu/host
http://www.opensolaris.org/os/project/qemu/Qemu_Networking
http://qemulator.createweb.de

192 BIBLIOGRAPHY

SkyEye

[103] SkyEye: http://skyeye.sourceforge.net

VMware

[104] VMware(TM) Inc.: http://www.vmware.com
[105] VMware-OpenBSD - HowTo Install VMWare-Tools:

http://openbsd-wiki.org
[106] VMware-Communities: http://communities.vmware.com
[107] VMware-Forum: http://vmware-forum.de
[108] VMware-Any-Any-Patch from Petr Vandrovec:

http://kinikovny.cvnt.cz/ftp/pub/vmware
[109] Open Virtual Machine Tools: http://open-vm-tools.sourceforge.net

Xen

[110] RED HAT(TM) ENTERPRISE LINUX 5.1 - Virtualization:
http://www.redhat.com/rhel/virtualization

[111] Virtual Machine Manager - VMM:
http://virtual-manager.et.redhat.com

[112] libvirt: http://www.libvirt.org

[113] Xen(TM): http://www.xen.org
[114] XenWiki - Xen-Networking: http://wiki.xensource.com/xenwiki/XenNetworking
[115] Xen-CentOS: Creating and Installing a CentOS5 domU instance
[116] Xen-Fedora: http://fedoraproject.org/wiki/FedoraXenQuickstartFC6
[117] Xen-OpenSolaris: http://www.opensolaris.org/os/community/xen
[118] Gerd Hoffmann: "Install SuSE as Xen guest."

Security

[119] OpenSSH: http://www.openssh.org
[120] SSH Communications Security(TM): http://www.ssh.com
[121] SSH Tectia(TM): SSH Tectia
[122] OpenSSH-FAQ: http://www.openbsd.org/openssh/faq.html
[123] OpenSSL: http://www.openssl.org
[124] OpenLDAP: http://www.openldap.org
[125] MIT-Kerberos: http://web.mit.edu/kerberos/www
[126] Heimdal-Kerberos: http://www.h5l.org
[127] sudo - "superuser do"(check google for actual link): http://www.sudo.ws

Specials

FreeDOS

[128] FreeDOS
[129] Balder

http://skyeye.sourceforge.net
http://www.vmware.com
http://openbsd-wiki.org
http://communities.vmware.com
http://vmware-forum.de
http://kinikovny.cvnt.cz/ftp/pub/vmware
http://open-vm-tools.sourceforge.net
http://www.redhat.com/rhel/virtualization
http://virtual-manager.et.redhat.com
http://www.libvirt.org
http://www.xen.org
http://wiki.xensource.com/xenwiki/XenNetworking
http://wiki.centos.org/HowTos/Xen/InstallingCentOSDomU
http://fedoraproject.org/wiki/FedoraXenQuickstartFC6
http://www.opensolaris.org/os/community/xen
http://et.redhat.com/~kraxel/xen/suse-guest.html
http://www.openssh.org
http://www.ssh.com
http://www.ssh.com/products
http://www.openbsd.org/openssh/faq.html
http://www.openssl.org
http://www.openldap.org
http://web.mit.edu/kerberos/www
http://www.h5l.org
http://www.sudo.ws
http://www.freedos.org
http://www.finnix.org/Balder

BIBLIOGRAPHY 193

Dynagen/Dynamips

[130] Dynagen, by Greg Anuzelli:
Dynagen

[131] Dynamips, Cisco(TM) 7200 Simulator:
Dynamips, Cisco(TM) 7200 Simulator

QEMU-Networking with VDE

[132] VDE-Virtual Distributed Ethernet:
http://sourceforge.net/projects/vde

[133] VirtualSquare: http://virtualsquare.org
[134] VirtualSquare: Basic Networking

PXE

[135] By H. Peter Anvin: SYSLINUX - PXELINUX -ISOLINUX
[136] PXE-ROM-Images: Etherboot

Routing

[137] "Linux Advanced Routing&Traffic Control", by Bert Hubert:
LARTC-HOWTO

Scratchbox

[138] Scratchbox

Serial-Console

[139] By van Emery: "Linux Serial Console HOWTO"
[140] By David S. Lawyer / Greg Hawkins: "Serial-HOWTO"
[141] By David S. Lawyer: "Text-Terminal-HOWTO"

Miscellaneous

[142] IEEE: http://www.ieee.org
[143] The GNU Netcat: Netcat
[144] Netcat Wikipedia: Netcat Wikipedia
[145] By van Emery: "Linux Gouge"

UnfiedSessionsManager Versions

[146] The first public version of 2008.02.11, by Arno-Can Uestuensoez. Available
as online help only by "ctys -H print"(more than 230pg. as ACII-Only):
"UnifiedSesionsManager" http://sourceforge.net/projects/ctys

[147] The second public version of 2008.07.10, by Arno-Can Uestuensoez: "Uni-
fiedSesionsManager" http://sourceforge.net/projects/ctys

[148] The second public version with minor updates of 2008.08.6, by Arno-Can
Uestuensoez: "UnifiedSesionsManager" http://sourceforge.net/projects/ctys

http://dynagen.org
http://www.ipflow.utc.fr/index.php/Cisco_7200_Simulator
http://sourceforge.net/projects/vde
http://virtualsquare.org
http://virtualsquare.org/index.php/VDE_Basic_Networking
http://syslinux.zytor.com
http://www.etherboot.org
http://lartc.org
http://www.Scratchbox.org
http://www.vanemery.com/Linux/Serial/serial-console.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/Serial-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/Text-Terminal-HOWTO.html
http://www.ieee.org
http://netcat.sourceforge.net
http://en.wikipedia.org/wiki/Netcat
http://www.vanemery.com/Linux/linux.html
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys
http://www.UnifiedSesionsManager.org
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys

194 BIBLIOGRAPHY

[149] Minor editorial updates of 2008.08.12, by Arno-Can Uestuensoez: "Unified-
SesionsManager" http://sourceforge.net/projects/ctys

[150] Enhanced documentation, 2008.08.16, by Arno-Can Uestuensoez: "Unified-
SesionsManager" http://sourceforge.net/projects/ctys

[151] Major enhancements and feature updates, beginning 2010/02, by Arno-Can
Uestuensoez: "UnifiedSesionsManager" http://sourceforge.net/projects/ctys

http://www.UnifiedSesionsManager.org
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys
http://www.UnifiedSesionsManager.org
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys
http://www.UnifiedSesionsManager.org
http://sourceforge.net/projects/ctys

BIBLIOGRAPHY 195

Sponsored OpenSource Projects

Support is available exclusively by direct contact only.

[152] Ingenieurbuero Arno-Can Uestuensoez - OpenSource:
http://www.i4p.org

[153] UnifiedSessionsManager:
http://ctys.sourceforge.net/
http://sourceforge.net/projects/ctys
https://github.com/ArnoCan/ctys

Commercial Support

Commercial support and additional services are available exclusively by
direct contact only.

[154] Ingenieurbuero Arno-Can Uestuensoez:
https://arnocan.wordpress.com/
http://www.i4p.de
http://www.i4p.eu

http://www.i4p.org
http://ctys.sourceforge.net/
http://sourceforge.net/projects/ctys
https://github.com/ArnoCan/ctys
https://arnocan.wordpress.com/
http://www.i4p.de
http://www.i4p.eu

196 BIBLIOGRAPHY

Copyright (C) 2008,2009,2010,2011 by
Ingenieurbuero fuer Telekommunikations und Software-Systemloesungen

Arno-Can Uestuensoez

https://arnocan.wordpress.com/

http://ctys.sourceforge.net/

Licenses:
Software: GPL3

Basic-Documents: FDL-1.3 - with invariant sections - The whole document!
Concepts+Interfaces+Documents: Creative Commons License-3.0 - cc BY-NC-ND

	Contents
	I Common Basics
	1 Preface
	1.1 History
	1.2 Contact
	1.3 Legal
	1.4 Acknowledgements

	2 Abstract
	3 Feature Specification
	3.1 Feature Introduction
	3.2 Feature-Sum-Up
	3.2.1 Supported Hypervisors
	3.2.2 Tested GuestOS support
	3.2.3 Supported Native Plugins
	3.2.4 Tested Client OSs

	4 Claimed Inventions
	4.1 First set - 2008.02.11
	4.2 Second set - 2008.07.10
	4.3 Third set - 2010.05.12
	4.4 Third set - 2010.05.31

	5 Secure Sessions
	5.1 Xinerama Screen Layouts
	5.1.1 Physical Layout-1
	Logical Layout-1a
	Logical Layout-1b
	Logical Layout-1c

	5.1.2 Physical Layout-2

	5.2 Client-Session Windows
	5.3 Bulk Access
	5.4 Encryption and Tunneling with SSH
	5.4.1 DISPLAYFORWARDING
	5.4.2 CONNECTIONFORWARDING
	5.4.3 Execution-Locations

	6 Advanced Features
	6.1 Bulk Access
	6.2 CLI-MACROS
	6.3 Generic Custom Tables
	6.4 Parallel and Background Operations
	6.5 Custom Desktops - Pre- and Post-Configuration

	7 HOSTs - Native Access
	7.1 Command Line Access - CLI
	7.2 Start a GUI application - X11
	7.3 Open a complete remote Desktop - VNC

	8 PMs and VMs - The Stacked-Sessions
	8.1 Session-Types
	8.2 VM-Stacks - Nested VMs
	8.2.1 Stacked-Operations
	8.2.2 Specification of VM Stacks
	8.2.3 Bulk-Core CPUs
	8.2.4 Almost Seamless Addressing

	8.3 Stacked Networking
	8.4 Stacked Functional Interworking
	8.4.1 Stack-Address Evaluation
	8.4.2 Startup
	8.4.3 Shutdown
	8.4.4 State-Propagation Basics
	State-Propagation
	Stack-Capability Interconnection
	Virtual-Hardware-Capability Interconnection
	Access Permissions

	9 CTYS-Nameservices
	9.1 Basics
	9.2 Runtime Components
	9.2.1 Distributed Nameservice - CacheDB
	9.2.2 Network LDAP-Access
	9.2.3 Application Range and Limits

	9.3 Required Namebinding
	9.3.1 Integration of PMs, VMs, and HOSTs

	9.4 Group-Targets
	9.5 Addressing Nested Stacks

	II Software Design
	10 Software Architecture
	10.1 Hypervisor Sessions Model
	10.2 Basic Modular Design
	10.3 Communications Model
	10.4 Security Model

	11 Runtime Interfaces
	11.1 Target-Platforms
	11.2 Communications Modes
	11.3 Control and Data Flow
	11.3.1 Distributed Controller
	11.3.2 Task Data
	11.3.3 Stack Interworking
	Create Propagation - CREATE
	Upward Propagation - CANCEL
	Downward Propagation

	11.4 Plugins Integration
	11.4.1 Basics on "bash"
	11.4.2 Component Framework
	Static Load of Modules
	Dynamic OnDemand Load of Modules
	Operational States
	IGNORE-Flag
	Multi-OS Boot Environments

	11.4.3 Dispatcher
	11.4.4 Common Data Structures
	ENUMERATE
	LIST

	11.4.5 Categories
	Category CORE
	Category HOSTs
	Category VMs
	Category PMs

	11.4.6 bash-Plugins and bash-Libraries

	12 CTYS-Nameservices
	12.1 Runtime Components

	III User Interface
	13 Common Syntax and Semantics
	13.1 General CLI processing
	13.2 Options Scanners - Reserved Characters
	13.3 Hosts, Groups, VMStacks and Sub-Tasks
	13.3.1 Common Concepts
	13.3.2 Flat Execution-Groups by Include
	13.3.3 Structured Execution-Groups by Sub-Tasks
	13.3.4 Stacks as Vertical-Subgroups
	13.3.5 VCircuits as Sequentially-Chained-Subgroups

	13.4 CLI macros
	13.5 Common Options

	14 Core Data
	14.1 Overview
	14.2 Standard Configuration Files
	14.3 Common Data Fields
	ACCELERATOR|ACCEL
	ARCH
	BASEPATH|BASE|B
	CATEGORY|CAT
	CONTEXTSTRING|CSTRG
	CTYSRELEASE
	DIST
	DISTREL
	EXECLOCATION
	EXEPATH
	GATEWAY
	HWCAP
	HWREQ
	HYPERREL|HYREL
	HYPERRELRUN|HRELRUN|HRELX|HRX
	ID|I
	IFNAME
	JOBID
	LABEL|L
	MAC|M
	NETMASK
	NETNAME
	OS|O
	OSREL
	PM|HOST
	PNAME|P
	RELAY
	RELOCCAP
	SERNO
	SPORT
	SSHPORT
	STACKCAP|SCAP
	STACKREQ|SREQ
	TCP|T
	TYPE
	USERSTRING|USTRG
	UUID|U
	OSREL
	PLATFORM|PFORM
	VCPU
	VERSION
	VMSTATE|VSTAT
	VRAM
	VNCBASE
	VNCDISPLAY|DISP
	VNCPORT|CPORT

	14.4 Common Processing Options
	CTYSADDRESS|CTYS
	DNS
	IP
	MACHINE
	MATCHVSTAT
	MAXKEY
	PKG
	REC_GEN[:<tab-args>]
	SORT[:<sort-args>]
	SPEC_GEN[:<tab-args>]
	TAB_GEN[:<tab-args>]
	TERSE
	TITLE
	TITLEIDX
	TITLEIDXASC
	USER
	XML_GEN[:<tab-args>]

	14.5 Specific Variations
	BASEPATH|BASE|B:<output>
	GROUP
	USER
	PID
	TUNNEL|SERVER|CLIENT|BOTH

	14.6 Generic Tables
	14.7 Generic Records

	15 Address Syntax
	15.1 Basic Syntax Elements
	15.2 SyntaxExamples
	15.3 AddressSyntaxElements
	<target-application-entity>
	<machine-address>
	<access-port>
	CONSOLE types
	<access-point>
	<access-port>
	<application>
	<application-entity>
	basepath|base|b
	filename|fname|f
	<host-execution-frame>
	id|i
	LABEL|L
	MAC|M
	<mconf-filename>
	<mconf-filename-path>
	<mconf-path>
	PATHNAME|PNAME|P
	<physical-access-point>
	<target-application-entity>
	TCP|T
	UUID|U
	<virtual-access-point>

	15.4 Stack Addresses
	<stack-address>

	15.5 Group Resolution
	<machine-address>
	<stack-address>

	15.6 ctys-help-on
	-H path
	-H list
	-H listall
	-H (man|html|pdf)
	-H funcList
	-H funcListMod
	-H funcHead
	-H (_ONLINEHELP_|_HELP_)
	EXAMPLES
	<ctys-command> -H (_ONLINEHELP_|_HELP_)
	<ctys-command> -H html=base
	<ctys-command> -H html=doc
	<ctys-command> -H list
	<ctys-command> -H ctys
	<ctys-command> -H man=ctys
	<ctys-command> -H html=ctys
	<ctys-command> -H pdf=ctys
	<ctys-command> -H pdf=howto
	<ctys-command> -H pdf=howto-print
	<ctys-command> -H pdf=command-ref
	<ctys-command> -H html=CLI,X11,VNC,VMW
	<ctys-command> -H html=ctys-extractARPlst,extractMAClst

	IV Appendices
	16 Current Loaded Plugins
	17 Miscellaneous
	17.1 Basic EXEC principle
	17.2 PATH
	17.3 Configuration files
	17.4 Media Access Control(MAC) Addresses - VM-NICs

	18 LICENSES
	18.1 CCL-3.0 With Attributes

	Bibliography
	Books
	UNIX
	Security
	Networks
	Embedded Systems
	Online References
	OSs
	Hypervisors/Emulators
	kvm
	QEMU
	SkyEye
	VMware
	Xen
	Security
	Specials
	FreeDOS
	Dynagen/Dynamips
	QEMU-Networking with VDE
	PXE
	Routing
	Scratchbox
	Serial-Console

	Miscellanuous
	UnfiedSessionsManager Versions
	Sponsored OpenSource Projects
	Commercial Support

