
ctys-uc-QEMU(7)
Use-Cases for QEMU

September 29, 2020

Contents
1 Install and Configure a VM with ctys-createConfVM 2

2 CREATE a session 2

3 CANCEL a session 4

4 LIST sessions 5

5 ENUMERATE sessions 5

6 SHOW 6

7 INFO 6

8 QEMU Examples 9
8.1 ARM . 9
8.2 Coldfire . 10

9 SEE ALSO 11

10 AUTHOR 11

11 COPYRIGHT 11

List of Figures
1 CONSOLE:EMACSAM for a QEMU Session . 4
2 CONSOLE:EMACSAM and CONSOLE:VNC . 4

1

ctys-uc-QEMU(7) 2/11

.

1 Install and Configure a VM with ctys-createConfVM
The current version supports a new installer with minimal required remaining manual actions. The Installation
process id described within the document ctys-configuration-QEMU for QEMU/KVM. This is basically a
2-stage-approach. The first stage is the call of the interactive tool ctys-configuration-QEMU for creation
of a generic Wrapper-Script and an additional configuration file with appropriate values for most of practical
cases. The second stage starts QEMU/KVM and begins the boot of the selected GuestOS from the configured
bootmedia. This could be performed by several optional interfaces, either from the standard ctys call or by
direct-execution of the wrapper-script.
The whole process is designed to be executed in a straight forward manner and should be prefered for the first
steps instead of the following legacy-examples.

2 CREATE a session
The first tests and examples of the QEMU plugin are based on the "arm-tst" VM contained in the examples of
QEMU. This is a ready to use VM, but the TCP/IP address is hardcoded to "10.0.0.2" thus might be required
to be configured. The coldfire test VM contained in the QEMU examples supports DHCP, thus is ready to
use within the network. Anyhow, for the first tests the actual usage of the network is not yet required. All
following examples, if not stated else, rely on the provided configuration file "arm-test.ctys" and the QEMU VM
"arm-test". These have to be installed as described within the examples chapter for SECTIONs:qemuInstall .

The first call now creates a session and starts the VM with VNC as a console which will be attached automat-
ically.

ctys -t qemu -a create=p:\$HOME/qemu/tst/arm-test/arm-test.ctys,reuse,console:vnc lab00

When the vde_switch is not configured yet the following error message occurs:

Missing management socket for "vde_switch"
QEMUMGMT=/var/tmp/vde_mgmt0.acue

Call: "ctys-vnetctl" on "lab00.soho"

The solution is simply to proceed as requested and just create the UNIX Domain sockets by the following call
with root permissions:

ctys-steupVDE -u \$USER create

The call could be executed remote too:

ctys-steupVDE -u \$USER create root@lab00

ctys-uc-QEMU(7) 3/11

The setup should be operational now. The support of the types of CONSOLEs depends on the actually im-
plemented call within the "arm-tst.ctys" script, which is a shell script with a defined interface. The currently
supported CONSOLE types by arm-test are: "CLI, SDL, VNC". The CLI and SDL types are supported as
DISPLAYFORWARDING in synchronous mode only for this version.

The following call creates an SDL CONSOLE.

ctys -t qemu -a create=p:\$HOME/qemu/tst/arm-test/arm-test.ctys,reuse,console:sdl lab00

As might be expected, the following call creates a CLI CONSOLE.

ctys -t qemu -a create=p:\$HOME/qemu/tst/arm-test/arm-test.ctys,reuse,console:cli lab00

The monitor as configured within "arm-test.ctys" could be attache by usage of "netcat"

nc -U \${MYQEMUMONSOCK}

which could be generated by the function "netGetUNIXDomainSocket" and is derived from "QEMUMONSOCK"
as raw-pattern, for additional information refer to the "arm-text.ctys" inline comments.
The QEMU monitor now could be entered by typing ’Ctrl-a’+’c’+’<RET>’, the console is recovered by typing
the same sequence again. For additional information refer to the QEMU User-Manual. A second terminal
emulation to be used is the ’unixterm’ command of VDE.

Alternatively EMACS could be used as a terminal emulation for CONSOLE access, either in "shell-mode" or
in "ansi-term" mode. This work s the same way as an ordinary xterm session, where within the the "display-
window" a cli is started connecting to a local UNIX domain socket. The socket has to be configured as a
serial device within the GuestOS. For EMACS two additional variants exist for both modes, where the frame
is divided into two windows, which connects the <execution-target> and the <machine-address> representing
the GuestOS.

In the following example in the upper window a login-prompt of the GuestOS is displayed, whereas in the
bottom window the "top" comman is shown for the hosting machine.

ctys-uc-QEMU(7) 4/11

Figure 1: CONSOLE:EMACSAM for a QEMU Session

The console with pure CLI access could be combined with an VNC console allowing additional graphical access.
This is particularly forseen, and will be offered soon, same as a debugging facility for GDB access to QEMU
and to applications within the GuestOS.

Figure 2: CONSOLE:EMACSAM and CONSOLE:VNC

3 CANCEL a session
The following call CANCELs the arm-test session.

ctys -t qemu -a cancel=p:\$HOME/qemu/tst/arm-test/arm-test.ctys,force,poweroff:0 lab00

ctys-uc-QEMU(7) 5/11

4 LIST sessions
The following call LISTs all sessions:

ctys -a list lab00

resulting to:

TCP-container|TCP-guest |label |sesstype|c|user|group
\sout{---------}+\sout{-------}+\sout{----}+\sout{----}+-+\sout{--+-------}
lab00.soho |- |arm-test|VNC |C|acue|ldapusers
lab00.soho |- |LAB00 |VNC |C|root|root
lab00.soho |- |LAB00 |VNC |S|root|root
lab00.soho |tst109 |arm-test|QEMU-arm|S|acue|ldapusers
lab00.soho |- |Domain-0|XEN |S|- |-
lab00.soho |lab00.soho.|lab00 |PM |S|- |-

The following call LISTs all sessions by usage of a specific LIST-MACRO for QEMU:

ctys macro:listconnpid lab00

Resulting in:

label |stype |c|DIS|cport|sport|pid |PM |TCP
\sout{----}+\sout{----}+-+\sout{-+---}+\sout{-}+\sout{-}+\sout{------}+\sout{--------}
LAB00 |VNC |C|1 | | |18933|lab00.soho|
LAB00 |VNC |S|1 |5901 | |5642 |lab00.soho|
arm-test|QEMU-arm|S|17 | |25704|25832|lab00.soho|
Domain-0|XEN |S| | | | |lab00.soho|
lab00 |PM |S| | | |1 |lab00.soho|192.168.1.71

5 ENUMERATE sessions
The following call ENUMERATEs all stored session configurations within the subdirectory of the HOME.

ctys -t qemu -a enumerate=b:qemu/tst lab00

The following call displays a listing formatted as a table:

ctys -t qemu macro:listconn lab00

ctys-uc-QEMU(7) 6/11

6 SHOW
The following call SHOWs dynamic data.

ctys -t qemu -a show lab00

7 INFO
Particularly the available capabilities for QEMU are displayed, which contains a list of all available CPUs and
the related system boards.

ctys -t qemu -a info lab00

This leads to:

ctys-uc-QEMU(7) 7/11

Node:lab00.soho - ctys(01_04_001A03)
System :Linux
OS :Linux
RELEASE :2.6.18-8.1.15.el5.centos.plusxen
MACHINE :x86_64
KERNEL\#CPU :SMP-KERNEL
CPU-INFO

processor:0
vendor_id :GenuineIntel
cpu family :6
model :22
model name :Intel(R) Celeron(R) CPU 420 @ 1.60GHz
stepping :1
cpu MHz :1599.853
cache size :512 KB

Flags assumed equal for all processors on same machine:
flags

vmx(VT-x - Pacifica) = 0
svm(AMD-V - Vanderpool) = 0
PAE = 1

MEM-INFO
MemTotal : 523 M
SwapTotal : 2031 M

SOFTWARE
Mandatory:

bash :GNU bash, version 3.1.17(1)-release
(x86_64-redhat-linux-gnu)

gawk :GNU Awk 3.1.5
sed :GNU sed version 4.1.5
SSH :OpenSSH_4.3p2, OpenSSL 0.9.8b 04 May 2006
top :top: procps version 3.2.7

Optional:
wmctrl :wmctrl is on this machine not available
lm_sensors :sensors version 2.10.0 with libsensors version

2.10.0
hddtemp :hddtemp version 0.3-beta13

PLUGINS :QEMU CLI X11 VNC
QEMU: Plugin Version:01.01.001a00pre

Operational State:ENABLED
QEMU version:
->QEMU-0.9.1

Magic-Number:QEMU_091
Verified Prerequisites:
->CLI-ValidatedBy(hookInfoCheckPKG)
->X11-ValidatedBy(hookInfoCheckPKG)
->VNC-ValidatedBy(hookInfoCheckPKG)
-><LocalClientCLI>
-><LocalClientX11>
-><LocalClientVNC>
-><LocalXserverDISPLAY>
-><delayedValidationOnFinalTarget>

ctys-uc-QEMU(7) 8/11

-><QEMU-0.9.1>
->_/usr/local/bin/vde_switch_info-USER=

acue-ACCESS-PERMISSION-GRANTED
->_/usr/local/bin/unixterm_info-USER=

acue-ACCESS-PERMISSION-GRANTED
->_/usr/local/bin/vdeq_info-USER=

acue-ACCESS-PERMISSION-GRANTED
->_/usr/local/bin/vdeqemu_info-USER=

acue-ACCESS-PERMISSION-GRANTED
-><QEMUSOCK=/var/tmp/vde_switch0.acue_info-USER=

acue-ACCESS-GRANTED>
-><QEMUMGMT=/var/tmp/vde_mgmt0.acue_info-USER=

acue-ACCESS-GRANTED>
-><CPU-Emulation:qemu-alpha>
-><CPU-Emulation:qemu-arm>
-><CPU-Emulation:qemu-armeb>
-><CPU-Emulation:qemu-cris>
-><CPU-Emulation:qemu-i386>
-><CPU-Emulation:qemu-img>
-><CPU-Emulation:qemu-m68k>
-><CPU-Emulation:qemu-mips>
-><CPU-Emulation:qemu-mipsel>
-><CPU-Emulation:qemu-ppc>
-><CPU-Emulation:qemu-ppc64>
-><CPU-Emulation:qemu-ppc64abi32>
-><CPU-Emulation:qemu-sh4>
-><CPU-Emulation:qemu-sh4eb>
-><CPU-Emulation:qemu-sparc>
-><CPU-Emulation:qemu-sparc32plus>
-><CPU-Emulation:qemu-sparc64>
-><CPU-Emulation:qemu-system-arm>
-><CPU-Emulation:qemu-system-cris>
-><CPU-Emulation:qemu-system-m68k>
-><CPU-Emulation:qemu-system-mips>
-><CPU-Emulation:qemu-system-mips64>
-><CPU-Emulation:qemu-system-mips64el>
-><CPU-Emulation:qemu-system-mipsel>
-><CPU-Emulation:qemu-system-ppc>
-><CPU-Emulation:qemu-system-ppc64>
-><CPU-Emulation:qemu-system-ppcemb>
-><CPU-Emulation:qemu-system-sh4>
-><CPU-Emulation:qemu-system-sh4eb>
-><CPU-Emulation:qemu-system-sparc>
-><CPU-Emulation:qemu-system-x86_64>
-><CPU-Emulation:qemu-x86_64>

CLI: Plugin Version:01.01.001a02
Operational State:DISABLED

X11: Plugin Version01.01.001a02
Operational State:DISABLED

VNC: Plugin Version:01.02.001b01
Operational State:DISABLED

ctys-uc-QEMU(7) 9/11

8 QEMU Examples

8.1 ARM

After installation of QEMU and VDE as described the utility ctys-plugins should be called for validation of
the operational state of the QEMU installation. The following call verifies the different plugins operational
states for server functionality.

ctys-plugins -T all -e

The client functionality could be verified with the call:

ctys-plugins -T all

Now, with a properly installed test environment from QEMU and the additional ctys call-scripts setup as
described before, the following call should start the arm-test QEMU VM with and CONSOLE of type SDL.

ctys -t qemu -a create=f:qemu/tst/arm-test/arm-test.ctys,console:sdl lab00

In case of ambiguous filenames in the cacheDB e.g. due to multiple access paths on multiple nodes by NFS the
following approaches could be applied

use "p:<pathname>"
When the full absolute path by p:<pathname> is provided, no local ambiguity may occur within the
execution context. This is recommended for the first steps, because it does not require any additional
action.

<machine-address>: Additional entries may lead to non-ambiguity. This depends on the contents of the
distributed caches and requires some knowledge of the system.

deactivate cacheDB:
Another quick solution is the disabling of any caching, therefore the options -c off and -C off could be
set. This leads to a filesystem scan, which of course results in some performance degradation, which could
be serious in case of deep filestructures with a "late match". The scan is performed by usage of the system
utility find.

The supported CONSOLE types for the from-the-box "arm-test" VM are CLI, SDL, and VNC. Additional
information is available as inline comment within the "arm-test.ctys" configuration from the

\$HOME/ctys/templates

directory. After this call an SDL terminal window should be opened. In case of networking problems the most
common error is the forgotten call of ctys-vnetctl -u <USER> create.

ctys-uc-QEMU(7) 10/11

8.2 Coldfire

ctys -t qemu -a create=f:/qemu/tst/coldfire-test-0.1/coldfire.ctys,console:cli lab00

ctys-uc-QEMU(7) 11/11

9 SEE ALSO
ctys-CLI(1) , ctys-configuration-QEMU(7) , ctys-createConfVM(1) , ctys-plugins(1) , ctys-QEMU(1) , ctys-uc-
CLI(7) , ctys-uc-VNC(7) , ctys-uc-X11(7) , ctys-vhost(1)
, ctys-VNC(1) , ctys-X11(1)

For GuestOS Setups:
ctys-uc-Android(7) , ctys-uc-CentOS(7) , ctys-uc-MeeGo(7)

10 AUTHOR

Arno-Can Uestuensoez <https://arnocan.wordpress.com/>
<https://unifiedsessionsmanager.sourceforge.io/>
<https://github.com/unifiedsessionsmanager>

11 COPYRIGHT
Copyright (C) 2008, 2009, 2010, 2011, 2020 Ingenieurbuero Arno-Can Uestuensoez
For BASE package following licenses apply,

• for software see GPL3 for license conditions,

• for documents see GFDL-1.3 with invariant sections for license conditions,

This document is part of the DOC package,

• for documents and contents from DOC package see

’Creative-Common-Licence-3.0 - Attrib: Non-Commercial, Non-Deriv’

with optional extensions for license conditions.

For additional information refer to enclosed Releasenotes and License files.

https://arnocan.wordpress.com/
https://unifiedsessionsmanager.sourceforge.io/
https://github.com/unifiedsessionsmanager

	Contents
	1 Install and Configure a VM with ctys-createConfVM
	2 CREATE a session
	3 CANCEL a session
	4 LIST sessions
	5 ENUMERATE sessions
	6 SHOW
	7 INFO
	8 QEMU Examples
	8.1 ARM
	8.2 Coldfire

	9 SEE ALSO
	10 AUTHOR
	11 COPYRIGHT

