
ctys-uc-VMW(7)
Use-Cases for VMW

September 29, 2020

Contents
1 General 2

2 Install and Configure a VM 2

3 CREATE a session 2

4 CANCEL a session 3

5 LIST sessions 3

6 ENUMERATE sessions 5

7 Display of Available Sessions 5

8 Change LIST Output by Custom Tables 6

9 Use MACROs for Custom Tables 8

10 SEE ALSO 9

11 AUTHOR 9

12 COPYRIGHT 9

List of Figures
1 VMware WS6 with an additional VNCviewer Client Session. 3

1

ctys-uc-VMW(7) 2/9

.

1 General
Some of the provided following examples date to the first release which was 2007/2008. They still are applicable,
because the interface is still the same, the archived examples perform on newer versions of Server-2.x, Player-
2.x+3.x and WS-7.x exactyl as on the former versions.

2 Install and Configure a VM
The installation and configuration of a VM and required basic operational functionality in current version is
foreseen to be performed by the provided tools from VMware Inc.(TM). The only partial exception is the au-
tomated creation of an inventory entry - still faulty in 1.X versions - for smarter operations.

The provided configuration by the product is fully sufficient for basic operations. In addition some optional
entries related to the GuestOS - such as IP-Address, OS, Distribution, etc. - could be provided either as Keyed-
Comments within the original vmx-file or in a standalone conf-file. The related details are described within the
document ctys-configuration-VMW(7) .

3 CREATE a session
The following call starts a session:

ctys -t vmw -a create=f:vmware/tst-ctys/tst117/tst117.vmx,reuse app2

The previous call contains two specifics to be mentioned. First the filename option "f:" is used, which does a
string comparison against the scanned absolute filepaths of configurations files available. The evaluation could
be processed from cacheDB and/or from the native filesystem on the execution target. Due to specific handling
of filenames just by pattern matching the following call leads to the same result, if unambiguous of course:

ctys -t vmw -a create=f:vmware/tst-ctys/tst117,reuse app2

If this is ambiguous, e.g. due to an backup directory, the following could be used too and might solve the
problem:

ctys -t vmw -a create=f:vmware/tst-ctys/tst117/t,reuse app2

The second part to be mentioned is the reuse flag, which initiates simply as first trial a connect, when this
fails, the VM session is created. Thus using the reuse flag can lead to some smart handling of sessions, where
it is no longer required to remmember whether a session is already present or not. Therefore of course the
appropriate configuration of the VM for headless background mode is required.

Another specific case is the usage of a VNCviewer session for a Workstation of Version-6 or later(?). The access
requires to be configured by a static port as described within the VMware product manual. The UnifiedSession-
sManager provides access by usage of the <machine-address> only, because it has the knowledge how to match
for example the LABEL to a stored vncport. The following example shows a simple redundant access to the
proprietary VMware console CONSOLE:VMW and the access to CONSOLE:VNC. The current version of
ctys supports only the enumeration of one console for each call.

ctys -t vmw -a create=l:tst117,console:vnc,connect app2

ctys-uc-VMW(7) 3/9

Figure 1: VMware WS6 with an additional VNCviewer Client Session.

4 CANCEL a session
The CANCEL behaviour could be widely configured for VMW. It is e.g. possible to configure an automatic
close of the VM, once the GuetsOS is shutdown, when the last VM is stopped, the frontend closes too. This
could be provided by command line options of VMware and is configured as default behaviour for the Unified-
SessionsManager. The following call CANCELs the VMW without additional user interaction, thus any number
of disconnected headless servers could be CANCELed too.

The UnifiedSessionsManager implements the standard behaviour, to try a native call to the GuestOS first, if
that fails or a timeout is hit, than the VMware hypervisor interface vmrun is called.

ctys -t vmw -a cancel=f:vmware/tst-ctys/tst117/t,poweroff:0 app2

Additional variants are similar to the provided examples for XEN.

5 LIST sessions
The simple LIST call

ctys -a list app2

produces the output:

ctys-uc-VMW(7) 4/9

TCP-container|TCP-guest |label |sesstype|c|user|group
\sout{---------}+\sout{-------------}+\sout{---}+\sout{----}+-+\sout{--+-------}
ws2.soho |- |tst100 |VNC |C|acue|ldapusers
ws2.soho |ws2.soho. |ws2 |PM |S|- |-
ws2.soho |- |tst100 |SSH(XEN)|T|acue|ldapusers
app2.soho |- |APP2 |VNC |C|root|root
app2.soho |- |APP2 |VNC |S|root|root
app2.soho |tst118 |tst117 |VMW |S|acue|ldapusers
app2.soho |tst113 |tst112 |VMW |S|acue|ldapusers
app2.soho |tst118 |tst117 |VMW |C|acue|ldapusers
app2.soho |tst113 |tst112 |VMW |C|acue|ldapusers
app2.soho |app2.soho. |app2 |PM |S|- |-
app2.soho |00:E0:81:2B:A1:F2|app2 |PM |S|- |-

This is the default case for two VMs running on app2 with DISPLAYFORWARDING to ws2, and still runnng
a local client of CLIENTFORWARDING tests for the XEN plugin. The clients and servers for VMW are now
coallocated on the server app2. The CONNECTIONFORWARDING mode is currently supported for:

Client and Server on different machines:

CONNECTIONFORWARDING
-> Workstation 6+ with VNC client
-> Server with CONSOLE

Client and Server on same machine:

DISPLAYFORWARDING
-> Workstation 6+ with CONSOLE
-> Workstation 6+ with VNC client
-> Server with CONSOLE

Thus the following call starts a native frontend with CONNECTIONFORWARDING on server 1.0.4 version:

ctys -t vmw -a create=f:vmware/tst-ctys/tst112/t,reuse -L CF olymp

The specifics for VMW is, that for the headless-mode initially a complete set with display forwarding is started
on the remote host. ctys starts additionally a local client attached to the configured remote port(default=904)
by an encrypted tunnel. The startup of the local client requires in this version an interactive user and password.
As far as currently known this has to be a valid local user, a kerberos user seem snot to work. Anyhow, for test
purposes here the user root was used, which should not be done for productive purposes.

The following list call displays now the complete set of interconnected sessions, for completeness the XEN
examples are included in the output.

ctys -a list localhost app2 olymp lab00

The following listing shows the two clients connected by CONNECTIONFORWARDING, which are a vncviewer
connecting as a XEN console to tst100, and a proprietary frontend of VMW connecting to tst112. Both are
interconnected by usage of a SSH tunnel implicitly created by the CORE plugin DIGGER
and listed as the session type SSH(XEN) and SSH(VMW).

ctys-uc-VMW(7) 5/9

TCP-container|TCP-guest |label |sesstype|c|user|group
\sout{---------}+\sout{-------------}+\sout{----}+\sout{----}+-+\sout{--+--------}
ws2.soho |- |tst100 |VNC |C|acue|ldapusers
ws2.soho |tst112 |tst112 |VMW |C|acue|ldapusers
ws2.soho |ws2.soho. |ws2 |PM |S|- |-
ws2.soho |- |tst100 |SSH(XEN)|T|acue|ldapusers
ws2.soho |- |tst112 |SSH(VMW)|T|acue|ldapusers
app2.soho |- |APP2 |VNC |C|root|root
app2.soho |- |APP2 |VNC |S|root|root
app2.soho |tst118 |tst117 |VMW |S|acue|ldapusers
app2.soho |tst118 |tst117 |VMW |C|acue|ldapusers
app2.soho |app2.soho. |app2 |PM |S|- |-
app2.soho |00:E0:81:2B:A1:F2|app2 |PM |S|- |-
olymp.soho |tst112 |tst112 |VMW |S|acue|ldapusers
olymp.soho |tst112 |tst112 |VMW |C|acue|ldapusers
olymp.soho |olymp.soho. |olymp |PM |S|- |-
lab00.soho |- |tst101 |VNC |C|acue|ldapusers
lab00.soho |- |LAB00 |VNC |C|root|root
lab00.soho |- |LAB00 |VNC |S|root|root
lab00.soho |- |Domain-0|XEN |S|- |-
lab00.soho |tst100 |tst100 |XEN |S|- |-
lab00.soho |tst101 |tst101 |XEN |S|- |-
lab00.soho |lab00.soho. |lab00 |PM |S|- |-

6 ENUMERATE sessions
The following call displays the communications interfaces of the test-pool VMs. For additional information refer
to User-Manual:"Display of Available Sessions".

ctys -a enumerate=macro:TAB_CPORT,b:vmware/tst-ctys

Resulting to the display:

Label |stype|cport|PM |MAC |TCP
\sout{--}+\sout{-}+\sout{-}+\sout{----}+\sout{--------------}+\sout{-----------}
tst117|VMW | |ws2.soho|00:50:56:13:11:52 |192.168.1.240
tst115|VMW |0 |ws2.soho|00:50:56:13:11:50 |192.168.1.235
tst117|VMW | |ws2.soho|00:50:56:13:11:52 |192.168.1.240
tst112|VMW | |ws2.soho|00:50:56:13:11:4D |192.168.1.235
tst003|VMW |0 |ws2.soho|00:50:56:13:11:33 |192.168.1.133
tst005|VMW |0 |ws2.soho|00:50:56:13:11:35 |192.168.1.135
tst103|VMW |0 |ws2.soho|00:50:56:13:11:44 |192.168.1.223
tst106|VMW |0 |ws2.soho|00:50:56:13:11:47 |192.168.1.226
tst111|VMW |0 |ws2.soho|00:50:56:13:11:4C |192.168.1.234
tst120|VMW |0 |ws2.soho|00:50:56:13:11:55 |192.168.1.208
tst128|VMW |0 |ws2.soho|00:50:56:13:11:5C |192.168.1.212
tst002|VMW |0 |ws2.soho|00:50:56:13:11:32 |192.168.1.132
tst111|VMW |0 |ws2.soho|00:50:56:13:11:4C |192.168.1.234

7 Display of Available Sessions
Once the basic installation and setup is accomplished, first a "PATHNAME/PNAME" based start of a VM
should be performed. The option -c off deactivates the use of the nameservice cache for an initially empty

ctys-uc-VMW(7) 6/9

cacheDB, thus suppresses several warnings and error messages of internally called tools.

The next step - after successful installation and configuration of the UnifiedSesssionsManager is the creation of
a populated cacheDB by usage of ctys-vdbgen for storage of a list of actually available instances. This is by
default applicable on distributed machines and is performed by default as parallel-tasks with minor dependency
on the count on targets.
The following call of ctys-vhost lists all available VMs with given constraints, in this case all instances of
VMW which could be started by the user "acue" on the host "app2". The set displayed has to be additionally
of the set "tst-ctys", which is the testpool for the UnifiedSessionsManager.

ctys-vhost -o pm,label,ids app2 vmw acue tst-ctys

The pm, the ids and the label are displayed as a result.
The additional string ’app2 vmw acue tst-ctys’ is used as a awk-regexpr and is evaluated as an AND based filter
for each word. The whole query requires in this case about 1.4seconds and the following result is displayed.
The average acces times are in the range of 0.6-0.8seconds in databases with about 2000 entries.

app2.soho;tst117;/homen/acue/vmware/tst-ctys/tst117/tst117.vmx
app2.soho;tst115;/homen/acue/vmware/tst-ctys/tst115/tst115.vmx
app2.soho;tst117;/homen/acue/vmware/tst-ctys/tst117.centos/tst117.vmx
app2.soho;tst111;/homen/acue/vmware/tst-ctys/tst111.OpenBSD-4.2/tst111.vmx

8 Change LIST Output by Custom Tables
The previous output, which is by default displayed in TERSE format could be formatted by a generic custom
table. The following call displays the required canonical field indexes.

ctys-vhost -o pm,label,ids,titleidx app2 vmw acue tst-ctys

The indexes in title line are prefixes as an extended table title by TITLEIDX. The values are the so calle
’Canonical Indexes’ of the database records to be used for definition of custom tables.

ContainingMachine(1);Label(3);ID(4)
app2.soho;tst117;/homen/acue/vmware/tst-ctys/tst117/tst117.vmx
app2.soho;tst115;/homen/acue/vmware/tst-ctys/tst115/tst115.vmx
app2.soho;tst117;/homen/acue/vmware/tst-ctys/tst117.centos/tst117.vmx
app2.soho;tst111;/homen/acue/vmware/tst-ctys/tst111.OpenBSD-4.2/tst111.vmx

This values could be now used to define the output table as:

ctys-vhost \
-o pm,label,ids,tab_gen:1_PM_7\%\%3_label_4\%\%4_ID_30 \
app2 vmw acue tst-ctys

As could be seen in the following output, this table configuration is not really helpful. The field sizes are too
short, and the common leading part of the pathnames for the ID fields is quite long.

ctys-uc-VMW(7) 7/9

PM |labe|ID
\sout{---}+\sout{--+----------------------------}
app2.so|tst1|/homen/acue/vmware/tst-ctys/ts
app2.so|tst1|/homen/acue/vmware/tst-ctys/ts
app2.so|tst1|/homen/acue/vmware/tst-ctys/ts
app2.so|tst1|/homen/acue/vmware/tst-ctys/ts

The following changes might help in advance of usability:

ctys-vhost \
-o pm,label,ids,tab_gen:1_PM_11\%\%3_label_9\%\%4_ID_30_L \
app2 vmw acue tst-ctys

Although this is much more helpful, the raise of the ID value should Ahelp some more.

PM |label |ID
\sout{-------}+\sout{-----}+\sout{--------------------------}
app2.soho |tst117 |are/tst-ctys/tst117/tst117.vmx
app2.soho |tst115 |are/tst-ctys/tst115/tst115.vmx
app2.soho |tst117 |-ctys/tst117.centos/tst117.vmx
app2.soho |tst111 |/tst111.OpenBSD-4.2/tst111.vmx

Thus the final trial for usage and probably storage as a predefined MACRO is:

ctys-vhost \
-o pm,label,ids,tab_gen:1_PM_11\%\%3_label_9\%\%4_ID_50_L app2 \
vmw acue tst-ctys

The final result is:

PM |label |ID
\sout{-------}+\sout{-----}+\sout{--}
app2.soho |tst117 |/homen/acue/vmware/tst-ctys/tst117/tst117.vmx
app2.soho |tst115 |/homen/acue/vmware/tst-ctys/tst115/tst115.vmx
app2.soho |tst117 |omen/acue/vmware/tst-ctys/tst117.centos/tst117.vmx
app2.soho |tst111 |acue/vmware/tst-ctys/tst111.OpenBSD-4.2/tst111.vmx

For getting some additional information on the actual installed distributions within the VMs the following call
is used:

ctys-vhost \
-o tab_gen:3_label_9\%\%11_Distro_15\%\%12_OS_17\%\%7_TCP_18 \
app2 vmw acue tst-ctys

The final result is:

ctys-uc-VMW(7) 8/9

label |Distro |OS |TCP
\sout{---}+\sout{----------}+\sout{--------}+\sout{-----------}
tst117 |CentOS-5.0 |Linux-2.6 |192.168.1.240
tst115 |Solaris-10 |Solaris-10 |192.168.1.235
tst117 |CentOS-5.0 |Linux-2.6 |192.168.1.240
tst112 |CentOS-5.0 |Linux-2.6 |192.168.1.235
tst003 |SuSE-9.3 |Linux-2.6 |192.168.1.133
tst005 |Ubuntu-7.10-S |Linux-2.6 |192.168.1.135
tst103 |Fedora-8 |Linux-2.6 |192.168.1.223
tst106 |Debian-4.0r3 |Linux-2.6 |192.168.1.226
tst111 |OpenBSD-4.2 |OpenBSD-4.2 |192.168.1.234
tst120 |FreeBSD-6.1 |FreeBSD-6.1 |192.168.1.208
tst128 |NetBSD-4.0 |NetBSD-4.0 |192.168.1.212
tst002 |SuSE-9.3 |Linux-2.6 |192.168.1.132
tst111 |OpenBSD-4.2 |OpenBSD-4.2 |192.168.1.234

The decision is now to use tst117 as test machine.

9 Use MACROs for Custom Tables
The previous examples could be stored as MACROs and called just by their macro name. Several preconfigured
macros arre available and could be listed with the utility ctys-macros(1) . Addtional Information on MACROs
is available within the User-Manual.

ctys-uc-VMW(7) 9/9

10 SEE ALSO
ctys(1) , ctys-createConfVM(1) , ctys-groups(1) , ctys-macros(1) , ctys-plugins(1) , ctys-vhost(1) , ctys-VMW(1)
, vmware(1)

11 AUTHOR

Arno-Can Uestuensoez <https://arnocan.wordpress.com/>
<https://unifiedsessionsmanager.sourceforge.io/>
<https://github.com/unifiedsessionsmanager>

12 COPYRIGHT
Copyright (C) 2008, 2009, 2010, 2011, 2020 Ingenieurbuero Arno-Can Uestuensoez
For BASE package following licenses apply,

• for software see GPL3 for license conditions,

• for documents see GFDL-1.3 with invariant sections for license conditions,

This document is part of the DOC package,

• for documents and contents from DOC package see

’Creative-Common-Licence-3.0 - Attrib: Non-Commercial, Non-Deriv’

with optional extensions for license conditions.

For additional information refer to enclosed Releasenotes and License files.

https://arnocan.wordpress.com/
https://unifiedsessionsmanager.sourceforge.io/
https://github.com/unifiedsessionsmanager

	Contents
	1 General
	2 Install and Configure a VM
	3 CREATE a session
	4 CANCEL a session
	5 LIST sessions
	6 ENUMERATE sessions
	7 Display of Available Sessions
	8 Change LIST Output by Custom Tables
	9 Use MACROs for Custom Tables
	10 SEE ALSO
	11 AUTHOR
	12 COPYRIGHT

